Introduction to R

Andrew McAdam and Karl Cottenie

September 13, 2011

Contents

Welcome to R! This is the script for my lecture on an introduction to R.
In this script you will find the code that I plan to use in lecture as well as
the output from R as it appears on my screen. This script will provide in a
lot of cases both the input and output of the R session. I recommend that
as you work your way through the script, you type the code into R, instead
of using copy-paste. This will allow you to get used to typing R code, and
get used to trouble-shooting any error messages you will get.

These scripts are based on the course notes of Andrew McAdam, and
adapted/changed by Karl Cottenie. So when you read “I”, you have to ini-
tially put Andrew’s voice in your head, and not mine (Karl’s), most of the
time.

I will provide both a pdf and an html version of the code. I am really
interested in what format you like best for reading and working with the
code. Just let me know any comments you might have related to the format,
pace of delivery, etc.

1 Interactive interface

1.1 Calculator

The first thing to note is that the “R console” represents your interface with
R. This is a Question and Answer type interface where you submit a com-
mand and often recieve some sort of output from R. The “>” symbol indicates
that R is ready to receive an input from you. In order to add comments to my
R session you can see that I have preceded this text with the “#” character.
This tells R to ignore what follows as it is only a comment.

If I forget to enter the # character I will get an error message because R
doesn’t understand this sentence.

I have entered some additional lines to make the document a little easier
to read.

One of the first things to consider is the directory in which you are
currently working. You can ask R for your current Working Directory using:

getwd ()
[1] "/Users/karlcottenie/Desktop/1. Teaching/courses/2012 FAR/2011-IBI06000/Topics/To
You can change the working directory using:
setwd()
Note that R is case-sensitive so that Setwd and setwd are not equivalent
Getwd ()
Error: could not find function "Getwd"

Apparently there is no function called “Getwd”

Both comments and commands can wrap around more than one line, but
a carriage return ends both. If you command wraps around more than one
line you will receive the 4+ prompt instead of the prompt indicating that R
is waiting for more information from you.

One of the simplest thing that R can be used for is simple calculations

5+18
[1] 23

Note that the output of the command is preceded by numbers in square
brackets. This is just an index for keeping track where the answer was put.
It actually means that it is the first value in a vector.

10%230
(10+10) /5+6
#versus

(10+10) / (5+6)

sqrt(81)

log(10)

#Note that this is different from

log10(10)

exp(1)

(1]
(1]
(1]
(1]
(1]
(1]
(1]

2300

10
1.818182
9
2.302585
1
2.718282

Note that the “log” and “exp” functions refer to base e and not base 10.

1.2

Storing information

In addition to receiving the output directly, the result of a calculation can
be stored as a new variable.

x<-5+18

#or

x=5+18

We can recall this variable whenever we need to. ..

#Note that we can call the variable pretty much whatever we want
answer<-5+18

answer

y=10%4

Z=X*y

[1] 23
[1] 23
[1] 40
[1] 920

Note that “=" or “<-” assigns a particular value to a variable. We can
also ask a question.

Z==X
[1] FALSE

In this case we have asked R whether z is equal to x. It has told us
that this expression is FALSE. NOTE THAT THIS IS VERY DIFFERENT
FROM:

Z==X

[1] 23

[1] 23

[1] TRUE
1.2.1 Vectors

Instead of creating a variable we can also create vectors.

variable <- c(12, 33, 45, 101, 65, 30, 55, 99, 70, 84)
#The ¢ is short for concatenate

variable

#Note again that the [1] just helps us keep track of the fact that the value 12 is the
one.to.ten <- 1:10

one.to.100 <- 1:100

one.to.100

#also

one.to.ten <- seq(1,10)

one.to.ten

#or

one.to.ten <- seq(1,10, 2)

one.to.ten

[1] 12 33 45 101 65 30 55 99 70 84
[1] i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
[656] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
(73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 83 89 90
[91] 91 92 93 94 95 96 97 98 99 100
(1] 1+ 2 3 4 5 6 7 8 910
[1] 13579

Note that the vector now wraps around more than one line and so the ||
values at the left help us to keep track of where we are in the vector.
Just like variables, you can also do math with vectors

one.to.100x%5

[1] 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
[19] 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180
[37] 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270
[65] 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360
[73] 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450
[91] 455 460 465 470 475 480 485 490 495 500

Because R is a statistical program you can also easily generate random
numbers from a known distribution

random<-rnorm(25, mean=0, sd=1)
random

plot (random)

[1] -0.81917338 0.97522976 -0.61860196 -0.44771966 -0.36653009 -1.26314677
[7]1 0.25191421 0.10662756 1.19632510 0.88499114 -0.72279693 -0.90327264
[13] -0.74869131 -0.03359329 0.29886874 -0.44107791 -0.84547728 -0.37608161
[19] 0.43212531 3.20605895 -1.22445281 0.70142745 0.61701119 0.54181404
[25] -0.68355117

The plot function above generates a new graphical interface. R has a
great deal of flexibility and power in how it generates graphics. You can do
fairly simple things as we did above, but you can also get quite detailed in
yoru graphics. I will spend more time talking about graphics later.

We can also check that this vector has 25 elements, a mean of zero and
a sd of one.

length (random)

sum(random) /length(random)

mean . random<-sum(random) /length(random)

sqrt (sum((random-mean.random) ~2)/(length(random)-1))
#or simply

mean (random)

sd(random)

[1] 25

[1] -0.01127093
[1] 0.975954
[1] -0.01127093
[1] 0.975954

1.2.2 Functions

We have already encountered a number of R functions already (e.g., log(),
mean(), sqrt(), etc.). In addition to creating objects, variables and vectors,
we can also write functions in R that will help to simplify life later. Remem-
ber that we already looked at:

log(exp(10))
[1] 10

As we saw there is also a logl10(x) function, but no exp10(x) function so
let’s write one!

exp10(10)
expl0<-function(x){
#This function accepts a value, x, as input and returns the value of 10 raised to the]
10°x
}
[1] 1e+10
We can now recall our function

expl0

function(x){

#This function accepts a value, x, as input and returns the value of 10 raised to the
10°x

}

As a test of our function. ..

expl10(3)

[1] 1000

This function only contains one argument but we can easily make changes
so that it contains several

explO<-function (x, y){

#This function is bogus but calculates 10 raised to the power of x but adds some other
107x+y

b

expl0(3, 4)

#Note that if I fail to include a necessary parameter then I will get an error
exp10(3)

#This isn’t a very useful function so I am going to change it back

expl0 <- function(x){

#This function accepts a value, x, as input and returns the value of 10 raised to the :
x <- 107x

X

}

[1] 1004
Error in 10°x + y : ’y’ is missing

The other important thing to know about functions is that they are like
Las Vegas. What happens in the function stays in the function. That is, we
have defined a variable x within the function. This variable is used for the
purpose of the function but does not affect any variable that we might have
in our workspace called x

x <-1
temp <- expl0(3)
X
temp
(1] 1
[1] 1000

2 Scripting interface

2.1 Definition

R stores variables, datafiles, functions, vectors, etc in what is called the
Workspace. This contains all of the items that you can access directly within
your R session. You can list all of the objects in your workspace using:

1s0)
[1] "answer" "ashina" "explO" "mean.random" "one.to.100"
[6] "one.to.ten" ‘'"random" "temp" "variable" n"x"
[11] nyn nzn

Let’s say I didn’t want to keep the variable vector around. I can delete
it from the workspace using

rm(variable)

#It is now erased!!

variable

1sO

#I can delete more than one object using
rm(answer, one.to.100, random)

1s()

Error: object ’variable’ not found

[1] "answer" "ashina" "explO" "mean.random" "one.to.100"
[6] "one.to.ten" "random" "temp" "x" "y

[11] llzll

[1] "ashina" "expl0" "mean.random" "one.to.ten" "temp"

[6] IIXII ||yll llzll

2.2 Saving the workspace

It is a good idea to save your workspace so that variables, etc can be used
in a later session

save.image ()
#This will save your workspace as your default workspace. You can also save it to a p

save.image("first workspace")

If you are working in R and you want to load a particular workspace then
you can load it using

#load (" .RData")

Before quitting R you will be asked whether you want to save your
workspace. This refers to the default workspace.

2.3 Saving the console/code

There are two ways of interacting with R:

e interactive mode. This is how we have used it so far. The advantage
is that you can check how things work on the fly. The disadvantage is
that you do not have a record of what you have done, explicitly. You
can save this by saving the console, by using the menus. In that case,
you save the console as a .txt file, that you can open for instance in
Word. Convert the font into Courrier or Courrier New to make sure
that the alignment is preserved.

e script editor mode. In this case, you write all your code in a text
file (save it as .R for instance), and you copy-paste the code into the
console. At the end of the day, you just have to save your workspace
and your script, and you have a complete document of all your steps
leading to an analysis.

For this course, I will “force” you to use the script editor mode, since I
want you to create a reproducable document, and that is the easiest way to
obtain this. However, you can also try short pieces in the console, before
you put the final version in the script editor. With that in mind, the most
often way to organize your interface with R, is to have your script editor in
the top part of your screen, and the console editor in the bottom part. This
is how the 2 interfaces I recommend (and Emacs which is what I use) work.

10

3 Getting help

There are a number of places where you can get help with R directly from
the console.

#71m
This brings up a description of the function “lm”

help.search("procrustes")

Help files with alias or concept or title matching ’procrustes’ using
fuzzy matching:

ade4: :procuste Simple Procruste Rotation between two sets of
points

vegan: :procrustes Procrustes Rotation of Two Configurations and
PROTEST

Type ’7PKG::F00’ to inspect entries ’PKG::F00’, or ’TYPE?PKG::F00’ for
entries like ’PKG::FO0-TYPE’.

This brings up all references to the Im function in packages and com-
mands in R. We will talk about packages later.

RSiteSearch("procrustes")

A search query has been submitted to http://search.r-project.org
The results page should open in your browser shortly

A search query has been submitted to http://search.r-project.org The
results page should open in your browser shortly.

This is quite a comprehensive search that covers R functions, contributed
packages and R-help postings. It is very useful but uses the web.

4 Packages

4.1 Reference to R

You will often need to make reference to this statistical package (i.e. in your
final project, thesis and publications). There is no manual to directly refer-
ence. Instead R provides a reference for you to use. In case you ever forget
how to find it look at the reminded that is given to you above. .. citation()”

11

http://search.r-project.org

citation()

To cite R in publications use:

R Development Core Team (2011). R: A language and environment for
statistical computing. R Foundation for Statistical Computing,
Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

A BibTeX entry for LaTeX users is

OManuald{,
title = {R: A Language and Environment for Statistical Computing},
author = {{R Development Core Team}},
organization = {R Foundation for Statistical Computing},
address = {Vienna, Austria},
year = {2011},
note = {{ISBN} 3-900051-07-0},
url = {http://www.R-project.org/},

We have invested a lot of time and effort in creating R, please cite it
when using it for data analysis. See also ’citation("pkgname")’ for
citing R packages.

4.2 Packages

R is just one big collection of packages. Some of these are so essential to the
functioning of R that they are automatically loaded when R boots up. Others
have to be loaded when you need them. Still others don’t come immediately
downloaded with R. You will, therefore, need to download these packages
before loading them

You can see a list of all of the available packages on the CRAN site

ook Packages need to be installed only once, but THEY MUST BE
LOADED EACH TIME YOU OPEN R, stk

ISwR
ashina

Error: object ’ISwR’ not found
vas.active vas.plac grp

12

1 -167 -102 1
2 -127 -39 1
3 -58 32 1
4 -103 28 1
5 -35 16 1
6 -164 -42 1
7 -3 -27 1
8 25 -30 1
9 -61 -47 1
10 -45 8 1
11 -38 12 2
12 29 11 2
13 2 -9 2
14 -18 -1 2
15 -74 3 2
16 -72 -36 2

ISwR is a package of datasets that was put together by Dalgaard to go
along with your book. We can load this package in the menus or with the
library() command.

#install.packages("ISwR") #if necessary, remove the # at the start of
this line
library(ISwR)

Error: unexpected symbol in "this line"

Note that ISwR hasn’t added anything to my workspace, but functions
and datasets within the package can now be accessed from the console.
We can load a datafile called “ashina” from ISwR

data(ashina)

ashina

vas.active vas.plac grp

1 -167 -102 1
2 -127 -39 1
3 -58 32 1
4 -103 28 1
5 -35 16 1

13

6 -164 -42 1
7 -3 =27 1
8 25 -30 1
9 -61 -47 1
10 -45 8 1
11 -38 12 2
12 29 11 2
13 2 -9 2
14 -18 -1 2
15 -74 3 2
16 -72 -36 2

The data file ashina is now part of the workspace and can be modified
or used for analyses just like any other object.

1s()
[1] "ashina" "expl0" "mean.random" "one.to.ten" "temp"
[6] IIXII ||y-|l llzll

4.3 Groups of packages

The multitude of R packages quickly resulted in the problem of package and
function detection. R solves this problem partly by “Task Views”. Each Task
View has a maintainer who is an expert in a particular field of science, e.g.,
multivariate statistics, or spatial analyses. The maintainer than provides
an overview of the packages that could be useful in that field. The advan-
tage of using Task Views is that it not only provides this overview of the
different packages, but also an easy way to install all these packages in one
step. You first install the “ctv” package (install.packages(“ctv”), and load
the package (library(“ctv”). Second, you install the packages within a spe-
cific Task View by install.views(“Environmetrics”), or update the packages
by update.views(“Environmetrics”).

14

