
GRASS GIS ON HIGH PERFORMANCE COMPUTING WITH MPI, OPENMP AND
NINF-G PROGRAMMING FRAMEWORK

S. Akhter a,b,*, K. Aida a,b and Y. Chemin c

a National Institute of Informatics, Hitotsubashi, Tokyo Japan –(shamim, aida)@nii.ac.jp

b Tokyo Institute of Informatics, Nagatsuta-ku, Yokohama, Japan
c International Centre of Water for Food Security, NSW, Australia- yann.chemin@gmail.com

Commission VIII, WG VIII/6

KEY WORDS: GRASS GIS, High Performance Computing, MPI, OpenMP, Ninf-G

ABSTRACT:

GRASS GIS (Geographical Resources Analysis Support System) is a free, open source software and has been used for Remote
Sensing (RS) and Geographic Information System (GIS) data analysis and visualization. Inside GRASS, different modules have been
developed for processing satellite images. Currently, GRASS uses databases to handle large datasets and the performance and
capabilities of GRASS for large datasets can be greatly improved by integrating GRASS modules with parallel and distributed
computing. Multi computer based distributed systems (clusters and Grids) have a large processing capacity for a lower cost, naturally,
choice turns towards developing High Performance Computing (HPC) applications. However, it is not an easy job to port GRASS
modules directly to HPC environment. The developers of satellite image processing applications need to solve the problem of both
data and task distribution, or how to distribute data and tasks among single or multiple clusters environment. The workload in HPC,
the bandwidth, the processors speed, parameters of evaluation methods and data size are additional concerning factors. GRASS
modules, i.e. i) “i.vi” is developed by Kamble and Chemin (2006) to process 13 vegetation indices, ii) “i.lmf” is developed by Akhter
et al. (2008) to remove the atmospheric effects from RS images and iii) “r.gaswap” is developed by Akhter et al. (2006) to find out
the crop parameters those are not directly visible from RS images, will be discussed as three case studies to developed GRASS
module framework on HPC. Developing the methodology, which enables to run GRASS GIS environment for RS images processing
on HPC systems, will be the main concerning issue of this paper. Additionally, different implementations for distributed GRASS
models will be discussed on three different programming platforms (MPI, Ninf-G and OpenMP) and their performance will also be
presented in this paper.

* Corresponding author. Shamim Akhter, National Institute of Informatics, Japan.

1. INTRODUCTION

Satellite imagery provides a large amount of useful information
and plays a vital role for research developments in Astronomy,
Remote Sensing, GIS, Agriculture, Disaster Management and
many other fields of study. Over the past decade Geospatial
Information Systems (GIS) have evolved from a highly
specialized niche to a technology that affects nearly every
aspect of our lives, from finding driving directions to managing
natural disasters. GIS is often described as integration of data,
hardware, and software designed for management, processing,
analysis and visualization of georeferenced data. GRASS GIS
(Geographical Resources Analysis Support System) is a free,
open source software/tool and has been used for RS and GIS
data analysis and visualization (Neteler and Mitasova, 2003).
GRASS GIS is capable of handling raster, topological vector,
image processing, and graphic data. It includes more than 350
modules for management, processing, analysis and visualization
of georeferenced data. Currently, GRASS uses databases to
handle large datasets and the performance and capabilities of
GRASS for large datasets can be greatly improved by
integrating GRASS modules with parallel and distributed
computing. Additionally, processing those satellite images
requires a large amount of computation time due to its complex
and large processing criteria. This seems a barrier for real time
decision making. To switch the job faster, high performance
computing can be a suitable solution. Multi computer based

distributed systems (clusters and Grids) have a large processing
capacity for a lower cost, naturally, choice turns towards
developing High Performance Computing (HPC) applications.
However, it is not an easy job to port any application in HPC
environment. The application performance is significantly
affected by the data distribution and task distribution methods
on the HPC. Data and task distribution are the procedures to
apply parallel techniques on data and task domain to gain
efficiency. Thus the developers of GRASS modules or satellite
image processing applications need to solve the problem of both
data and task distribution, or how to distribute data and tasks
among single or multiple clusters environment. The workload in
HPC, the bandwidth, the processors speed, parameters of
evaluation methods and data size are additional concerning
factors.

Developing GRASS module framework on HPC, three case
studies, i.e. i) “i.vi” is developed by Kamble and Chemin (2006)
to process 13 vegetation indices, ii) “i.lmf” is developed by
Akhter et al. (2008b) to remove the atmospheric effects from RS
images and iii) “r.gaswap” is developed by Akhter et al. (2006)
to find out the crop parameters those are not directly visible
from RS images, are discussed. The foremost case study (i.vi)
discusses the interoperability framework designing issues
between the GRASS tool and HPC. The second case study
discuss about the satellite image data distribution issues and the

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 8, Kyoto Japan 2010

580

final case study discusses the processing level data and task
distribution on both cluster and grid platforms. Thus, the three
case studies enable to run GRASS GIS environment for RS
images processing on HPC systems and discuss the performance
improvement issues also.

2. METHODOLOGY DEVELOPMENT AND
EXPERIMENTS

2.1 Case Study 1: GRASS and HPC Interoperability
Framework

Developing the methodology, which enables to run GRASS GIS
environment for satellite image processing on distributed
computing systems, is the main concerning issue here.
Additionally, three different implementation methodologies for
distributed i.vi are discussed for three different programming
platforms MPI (MPI, 2007), Nin-G (Ninf-G, 2007) (Tanaka et
al, 2003) and OpenMP (Akhter, S. and Roberts, J., 2006).
GRASS module i.vi is developed by (Kamble et al., 2006), and
is used as a test example for this study. GRASS module i.vi, is
used to process 13 different Vegetation Indices (VI) for the
satellite images (Akhter et al., 2008b).

Grass module i.vi works with raster images (rows x columns).
Different band raster images are required for different indices.
The generic indices (NDVI, RVI etc) use red and nir�near
infrared�band images. However, arvi uses red, nir and blue
band images, GVI uses red, nir, blue, green, chan5 and chan7 of
landsat images and GARI uses red, nir, blue, green band images.
GRASS functions are used to extract row wise data from the
specific band images and store them in buffers. Then, each
column value is extracted sequentially from the buffers and
sends them for generating the specific VI values. Thus, after
completing the VI from row buffers, the row wise VI values are
put back into output image and this process will continue for
each row. Figure 1 presents the structure of serial running i.vi
module (for simplicity, only two band images are presented).

Master-worker approach has been taken to distribute i.vi
module in MPI and Ninf-G platforms. The master process runs
in the GRASS environment, and decomposes the target images
in rows and dispatches the computation of rows to multiple
worker processes. Worker processes are free from GRASS, they
just run the computation and send back the row wise result to
the master process. The module i.vi is implemented using MPI
on a PC cluster system (i.vi.mpi) and Ninf-G on the same PC
cluster system (i.vi.grid) to hold the similarity between the
experimental environments. However, i.vi.grid module has been
structured as it is capable to run in distributed GRID system. In
Figure 2, the implementing structure of distributed i.vi is
presented (for simplicity only two band images have been
presented). Here, S1, S2,.....,Sn are different worker processes.
However, OpenMP, a shared memory and multi-threading
approach, whereby the master "thread" executes a series of
instructions consecutively and calls a specified number of slave
"threads" to divide the tasks among them. The threads then run
concurrently to execute a block of tasks in parallel. In our
GRASS OpenMP implementation (i.vi.omp) multiple threads
execute the computation of a row (all columns) concurrently.
Each cpu core is responsible to process each thread. The
i.vi.omp runs in similar style of serial module under GRASS
environment.

Figure 1: Serially Running i.vi Module Structure

Figure 2: Distributed i.vi Module Structure

Figure 3: i.vi Module Performance Evaluation: Serial, MPI and

Ninf-G Implementations

�

���

�

���

�

���

� ��� ��� ��� ��� 	��
�� ����

��������	�
����
������������	�
����
������������	�
����
������������	�
����
����

�
�
�
�
��
�
��
�
�
�
�	

�
�

�
�
�

�
�
�
�
��
�
��
�
�
�
�	

�
�

�
�
�

�
�
�
�
��
�
��
�
�
�
�	

�
�

�
�
�

�
�
�
�
��
�
��
�
�
�
�	

�
�

�
�
�

��
��������������
�����
���

��������������� ���!�"��
�

Figure 4: Parallel i.vi Performance with OpenMP and MPI

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 8, Kyoto Japan 2010

581

2.1.1 Experiments: The details MPI and Ninf-G
implementations and performance comparisons were presented
in (Akhter et al., 2008b) and the results (Figure 3) concluded
that the i.vi MPI implementation performs better than Serial and
Ninf-G implementations in a single cluster with 4 computing
nodes. However, OpenMP performance was not been integrated.
Running GRASS module with OpenMP requires to enable the –
fopenmp flag and gomp libraries support. GRASS version 7 and
gcc compiler > 4.0 are the additional compulsory requirements
(GRASSWiki, 2010). Figure 4 presents the performance of i.vi
with OpenMP (i.vi.omp) and MPI (i.vi.mpi) implementations.
OpenMP version is implemented in a single node with 4 cpu
cores platform where as the MPI version using 2 machines with
2 cpu cores each. According to Figure 4, the OpenMP
implementation is performing better than the MPI
implementation. Data distribution workload in MPI
implementation is the main performance bottleneck. OpenMP
implementation shares the same memory so data distribution
workload is absent here.

2.2 Case Study 2: Satellite Image Data Distribution Issues

The Local Maximum Fitting (LMF) (Sawada et al., 2001) uses
temporally splined procedure by combining the time series
filtering and functional fitting for removing the clouds, hazes
and other atmospheric effects from time series data of each pixel
and ensure the data consistency (Sawada et al., 2002). OpenMP
based LMF was initially implemented in (Sawada et al., 2005).
A cluster based parallel LMF procedure was approached and
implemented in (Akhter et al., 2007).

Data distribution methodology became necessary to address the
Asia regional yearly temporal MODIS images (46 bands, 3932
rows and 11652 columns). A script is developed to read each
row from all temporal images and stack them together to
formulate a row-image. Each row-image is then passed into the
parallel LMF model for processing. Although, working with the
Row Distribution approach on the Asia regional MODIS images
a LMF software limitation, increasing the column numbers
more than 7000 creates a software segmentation fault, was
traced. This happens because of the data storing constraint
inside the LMF programming environment. As a result, both
row-wise and column-wise data distribution mechanism is
required and implemented.

In this methodology, all the temporal images in column
direction are virtually (programmatically) partitioned into a
desirable block. The block window size (BWS) needs to be
chosen according to the image data type. We used a threshold
value (7000) for window size selection so that the column data
will be equally distributed. Thus, from each column portion,
each row of all temporal images will be merged together to
become a row image and then processed by LMF program. The
image formulation scenarios of the Row and Row Column
Distribution are presented in Figure 5. In the Row Column
Distribution, two images with BWS=2 (Image1, Image2) have
been formulated from each row of all temporal images.

2.2.1 Experiments: In Figure 6, both data distribution
scenarios are implemented with Ninf-G programming platforms.
It seems Row Column Distribution takes much time than the
row distribution. This is a usual scenario in distributed
computing aspects. More partitioning in the image, creates more
data distributions (sending and receiving), much more timing.

Figure 5: Image Formulation with Data Distribution Strategies

�

���

���

���

���

����

����

����

����

� � �� �� �� �	 ��

��������	
���
���������	
���
���������	
���
���������	
���
�

�
��
�
�
�
�
�
�
	

�
��
�
�
�
�
�
�
	

�
��
�
�
�
�
�
�
	

�
��
�
�
�
�
�
�
	

��������	�
������
�	���������

���������������	�
������
�	���������

Figure 6: Run time comparison of Row Distribution and Row
Column Distribution is a Single Cluster Implementation

Figure 7: Time Comparison of Asynchronous and

Synchronous Call

However, increasing computing nodes trends to reduce the
runtime to the same level influenced to implement in Grid or
multi-cluster based system with much more computing

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 8, Kyoto Japan 2010

582

resources. According to the grid implementation of Row
Column Distribution achieves 27.1% speedup with three
clusters implementation from single cluster implementation.
Additionally, Row Column Distribution on three clusters
implementation gain 12% speedup over Row Distribution in
single cluster implementation. Thus, grid based implementation
can reduce the additional overhead by the Row Column
Distribution.

Additionally, Ninf-G itself contains two different
implementations (API Reference, 2008), Synchronous and
Asynchronous, for data distribution. In Synchronous calling,
client waits until the completion of the computation on the
server side. Asynchronous call returns immediately after all the
arguments have been sent. Figure 7 presents a comparison of
Ninf-G calling systems for LMF processing. Both calling
systems show nearly same performance in single cluster
environment. However, their performance is different in multi-
clusters environment. Asynchronous call seems faster than
Synchronous call. This is happening because Asynchronous
calling strategy provides a load balancing job distribution as
First Come First Serve (FCFS). Thus, the fastest cluster will
process more jobs than slower clusters. On the other side,
Synchronous calling waits till one distribution of the submitted
jobs to the clusters will not be finished. It means that due to the
slowest performing cluster the overall performance will be
delayed.

2.3 Case Study 3: Processing Level Data and Task
Distribution Issues

SWAP-GA (Akhter et al., 2008a) is a combined model of the
SWAP (Soil Water Atmosphere and Plant) crop model and the
Remote Sensing (RS) data assimilation technique, which is
optimized by Genetic Algorithm (GA). SWAP-GA is used to
find out the crop parameters those are not directly visible from
RS images. “r.gaswap”, a GRASS module developed by Akhter
et al. (2006), enables SWAP-GA to run inside GRASS
environment.

The full SWAP-GA executable module is made with
RSImageAccess, GASWAP, and Evaluation sub-modules. The
RSImageAccess module is the main module, where the program
starts. This module extracts the pixel value and the date for each
image from the GRASS environment, and it calls this GASWAP
module. The GASWAP module is able to run GA and
completes the assimilation process. The Evaluation module runs
the SWAP executable for each population and sends the
simulated results to the GASWAP module. An example with 15
pixels image, 60 populations and 10 generations gives a clear
view of calling procedures inside the SWAP-GA model.
Particularly, in this case, the RSImageAccess module will call
the GASWAP module 15 times (one for each pixel). For each
pixel, the GASWAP module first internally executes the SWAP
executable 60 times to initialize the simulated pixel value for
every population and then calls the Evaluation module 10 times
(one for each generation). For each generation, the Evaluation
module executes the SWAP executable 60 times and produces
simulated pixel values for 60 populations. A high demand of
parallel computing is called for inside the whole SWAP-GA
module. Three different strategies are applied to work SWAP-
GA in a parallel manner.

The strategies are presented by the following approaches: i)
Data Distribution Approach, ii) Task Distribution Approach, iii)
Combined Data and Task Distribution Approach.

Table 1: Execution Time in Single Site

2.3.1 The Data Distribution Approach: The Data
Distribution approach is implemented on the Grid using Ninf-G.
The Master-worker paradigm is used for parallelization in the
distributed SWAP-GA model. Inside the master node, the
RSImageAccess module works, whereas in the worker nodes
assimilation procedures (GASWAP and Evaluation modules)
run. The RSImageAccess module, running as Ninf-G client,
dispatches a set of pixels to the remote PC cluster. In the remote
PC cluster, the GASWAP module and the Evaluation module,
running as a Ninf-G server, perform a computation for each
pixel, where the computations inside the PC cluster are
distributed among computing nodes through the local batch
scheduler in FCFS manner.

2.3.2 The Task Distribution Approach: An evaluation
procedure is called for each population to execute the SWAP
executable. Thus, the Evaluation module (to evaluate
population) can be distributed through Ninf-G. Here, the master
node runs both the RSImageAccess and the GASWAP module,
and worker nodes only run the Evaluation module. The
GASWAP module, running as a Ninf-G client, dispatches a set
of populations to the remote PC cluster. In the remote PC
cluster, the Evaluation module, running as a Ninf-G server,
performs an evaluation for each population. The computation
inside the PC clusters is distributed among computing nodes
through the local batch scheduler.

2.3.3 The Combined Data and Task Distribution
Approach: So far, the above two approaches are running with
Ninf-G, whereas this third approach is implemented with
combined Ninf-G and MPI and called the Combined
Distribution model. The idea of the Combined Distribution
approach is to distribute the computation of pixels and
populations in a hierarchical way. Here, the master node runs
the RSImageAccess module and distributes a pixel to the
gateway node, or the master node of the remote PC clusters with
Ninf-G to invoke the GASWAP module. The approach is
similar to the Data Distribution. After getting the pixel value,
the master node (GASWAP) dispatches the populations to
worker nodes (inside cluster) using MPI to run the Evaluation
modules and this is similar to the Task Distribution Approach.

Computing Nodes Implementation

Strategy
1 2 15

Serial SWAP-GA 27,026
(sec)

_ _

Data Distribution 17,382

(sec)

9,276

(sec)

1,218

(sec)

Task Distribution 19,745
(sec)

10,941
(sec)

4,031
(sec)

Combined
Distribution

_ 18,216�

(sec)

3,152

(sec)

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 8, Kyoto Japan 2010

583

2.3.4 Experiments: Table 1 presents the running time
comparison of the SWAP-GA serial model with the parallel
SWAP-GA models with Computing Nodes 1, 2 and 15 on a
single cluster. With 15 nodes, the performance of parallel
models is improved. According to the distribution approaches,
the Data Distribution approach performs better than others. In
the Data Distribution approach, the dispatched workload (one
whole pixel evaluation) is bigger and the communication
overhead is hidden through the computing workload. Whereas,
in the Task Distribution approach, Ninf-G calls happen
frequently (once to evaluate the assigned populations set for
each generation) and the workload to the computing nodes is
not sufficient to gain the efficient parallelism. Additionally,
Ninf-G takes some time for each RPC to establish and to close
the session with computing nodes. On the other hand, to reduce
the Ninf-G session establishment cost, the Combined Data and
Task Distribution approach is presented where (inside the
cluster) MPI reduces the session establishment cost (that was
taken by Ninf-G) and the performance is improved. However,
the performance of the combined approach is not superior to the
Data Distribution approach. The same numbers of Ninf-G calls
are conducted in both the Data Distribution and the Combined
Distribution approaches. However, the Combined Distribution
approach takes sometime for MPI communication.

Table 2 presents the additional experimental results on the real
Grid testbed (multiple sites) with the Combined Data and Task
Distribution Approach and the Data Distribution Approach with
15 pixels, 10 generations and 60 populations. The best
performance for the Data Distribution approach was achieved in
the single site experiment (1,378 sec). However, the Grid with
more CPU power makes the Combined Distribution approach
performance (922 sec) better than the best performance of the
Data Distribution approach. Table 2 highlight the major
drawback of the Data Distribution approach, when the pixel
amount is diminutive compared to the computing nodes number.
For this particular workload (with 15 pixels, 10 generations and
60 populations) more than 15 nodes will not create any
advanced effects on the Data Distribution approach whereas the
door is open for the Combined Distribution approach to use
more than 15 computing nodes (at most 60 nodes in each
cluster). However, the Combined Distribution approach
performance greatly depends on the number of clusters as well
as the number of computing nodes in each cluster. So, when the
cluster number is equal to the pixel number and the computing
node number inside each cluster is equal to the population
number, it may provide the best performance for the Combined
Distribution approach.

3. CONCLUSION

The three case studies concern on the three different
implementation phases of GRASS GIS on HPC. The foremost
case study concerns on the interoperability framework for
GRASS and HPC and that has been successfully implemented
with three different programming frameworks. OpenMP
performance seems better than MPI and Ninf-G
implementations. However, the performance on parallel
implementation differs on the data distribution and task
distribution issues. The second case study focuses on the image
level data distribution to multiple computing nodes. Partitioning
in the image data creates more process to work in parallel and
that reflects more communication overhead. Additional
computing power hides the communication overhead by
increasing the processing efficiency. The third case study

Table 2: Execution Time on Multiple Sites

concerns on the processing level distribution issues. The
processing codes or software itself can work in parallel by
distributing independent coding modules to process with
different computing nodes. Additionally, single or combined
programming frameworks can improve the whole performance
however, that needs to be chosen according to the coding
structures, processing time, available computing resources,
communication overhead etc.

ACKNOWLEDGEMENTS

This article is based on work supported in part by Japan Society
for the Promotion of Science (JSPS) Post Doctoral Fellowship
for Foreign Researchers Program Grant (P 09260).

REFERENCES

API Reference, 2008. “Ninf-G Client API Reference”,
http://ninf.apgrid.org/documents/ng/api.html, (accessed 28 Jun,
2008)

Akhter, S. and Roberts, J., 2006. Multi-Core Programming –
Increasing Performance through Software Multi-threading.
Intel Press. ISBN 0-9764832-4-6

Akhter, S., Jangjaimon, I., Chemin, Y., Uthayopas, P., Honda,
K, 2006. Development of a GRIDRPC Tool for Satellite
Images Parallel Data Assimilation in Agricultural Monitoring,
International Journal of GeoInformatics, Vol 2, No 3.

Akhter, S., Sarkar, I., Rabbany, K.G., Akter, N., Akhter, S.,
Chemin, Y., and Kiyoshi, H., 2007. Adapting the LMF
Temporal Splining Procedure From Serial toMPI/Linux
Clusters. Journal of Computer Science}3 (3): 130-133, ISSN
1549-3636, Science Publications.

Akhter, S., Osawa, K., Nishimura, M., and Aida, K., 2008a.
Experimental Study of Distributed SWAP-GA Models on the
Grid. IPSJ Transactions on Advanced Computing Systems,
Vol.1 No.2, pp.193-206.

of Computing Nodes Execution
Strategy

Cluster
One

Cluster
Two

Cluster
Three

Total
Time

(sec)

10 5 - 3,189

5 10 - 3,329

21 31 - 1,193

16 16 8 1,004

Combined
Distribution

16 21 8 922

0 15 3,519

5 10 2,986

10 5 2,750

Data
Distribution

15 0 1,378

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 8, Kyoto Japan 2010

584

Akhter, S., Aida, K. and Chemin, Y. 2008b. Asynchronous
Grid LMF Processing of Vegetation Index for Asia,
International Journal of GeoInformatics, Vol 4,No 4, pp. 39-45.

GRASSWiki, 2010, “OpenMP support in GRASS 7”,
http://josef.fsv.cvut.cz/WIKI/grass-osgeo/index.php/OpenMP,
(accessed 27 May, 2010)

Kamble, B. and Chemin, Y.H., 2006. “GIPE in GRASS Raster
Add-ons”, http://grass.gdf-hannover.de/wiki/, GRASSAddOns,
RasterAdd-ons, (accessed 26 Oct, 2007)

MPI, 2007. A tutorial, “Message Passing Interface”,
http://www-unix.mcs.anl.gov/mpi/, (accessed 28 Oct, 2007)

Neteler, M. and Mitasova, H., 2003. Open Source GIS: A
GRASS GIS Approach. Second Edition, Kluwer Academic
Publishers.

Ninf-G, 2007. “Ninf-G Information Web Site”,
http://ninf.apgrid.org/, (accessed 28 Oct, 2007)

Sawada, H., Sawada, Nagatani, Y. I., and Anazawa, M., 2001.
In: Proceeding for the 1st regional seminar on geo-informatics
for Asian eco-system management

Sawada, H., and Sawada, Y., 2002. Modeling of vegetation
seasonal change based on high frequency observation satellite,
Environmental Information Science Papers, Vol. 16.

Sawada, Y., Mitsuzuka, N., and Sawada, H., 2005.
Development of A Time-Series Model Filter for High Revisit
Satellite Data, In: Proceedings of the Second International
Vegetation User Conference

Tanaka, Y., Nakada, H., Sekiguchi, S., Suzumarn, T.,
Matsuoka, S., 2003. Ninf-G: A Reference Implementation of
RPC-based Programming Middleware for Grid Computing.
Journal of Grid Computing 1: 41-51.
.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 8, Kyoto Japan 2010

585

