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ABSTRACT: 
 
GRASS GIS (Geographical Resources Analysis Support System) is a free, open source software and has been used for Remote 
Sensing (RS) and Geographic Information System (GIS) data analysis and visualization. Inside GRASS, different modules have been 
developed for processing satellite images. Currently, GRASS uses databases to handle large datasets and the performance and 
capabilities of GRASS for large datasets can be greatly improved by integrating GRASS modules with parallel and distributed 
computing. Multi computer based distributed systems (clusters and Grids) have a large processing capacity for a lower cost, naturally, 
choice turns towards developing High Performance Computing (HPC) applications. However, it is not an easy job to port GRASS 
modules directly to HPC environment. The developers of satellite image processing applications need to solve the problem of both 
data and task distribution, or how to distribute data and tasks among single or multiple clusters environment. The workload in HPC, 
the bandwidth, the processors speed, parameters of evaluation methods and data size are additional concerning factors. GRASS 
modules, i.e. i) “i.vi” is developed by Kamble and Chemin (2006) to process 13 vegetation indices, ii) “i.lmf” is developed by Akhter 
et al. (2008) to remove the atmospheric effects from RS images and iii) “r.gaswap” is developed by Akhter et al. (2006) to find out 
the crop parameters those are not directly visible from RS images, will be discussed as three case studies to developed GRASS 
module framework on HPC. Developing the methodology, which enables to run GRASS GIS environment for RS images processing 
on HPC systems, will be the main concerning issue of this paper. Additionally, different implementations for distributed GRASS 
models will be discussed on three different programming platforms (MPI, Ninf-G and OpenMP) and their performance will also be 
presented in this paper. 
 
 

                                                                 
*  Corresponding author.  Shamim Akhter, National Institute of Informatics, Japan. 

1. INTRODUCTION 

Satellite imagery provides a large amount of useful information 
and plays a vital role for research developments in Astronomy, 
Remote Sensing, GIS, Agriculture, Disaster Management and 
many other fields of study. Over the past decade Geospatial 
Information Systems (GIS) have evolved from a highly 
specialized niche to a technology that affects nearly every 
aspect of our lives, from finding driving directions to managing 
natural disasters. GIS is often described as integration of data, 
hardware, and software designed for management, processing, 
analysis and visualization of georeferenced data. GRASS GIS 
(Geographical Resources Analysis Support System) is a free, 
open source software/tool and has been used for RS and GIS 
data analysis and visualization (Neteler and  Mitasova, 2003). 
GRASS GIS is capable of handling raster, topological vector, 
image processing, and graphic data. It includes more than 350 
modules for management, processing, analysis and visualization 
of georeferenced data. Currently, GRASS uses databases to 
handle large datasets and the performance and capabilities of 
GRASS for large datasets can be greatly improved by 
integrating GRASS modules with parallel and distributed 
computing. Additionally, processing those satellite images 
requires a large amount of computation time due to its complex 
and large processing criteria. This seems a barrier for real time 
decision making. To switch the job faster, high performance 
computing can be a suitable solution. Multi computer based 

distributed systems (clusters and Grids) have a large processing 
capacity for a lower cost, naturally, choice turns towards 
developing High Performance Computing (HPC) applications. 
However, it is not an easy job to port any application in HPC 
environment. The application performance is significantly 
affected by the data distribution and task distribution methods 
on the HPC. Data and task distribution are the procedures to 
apply parallel techniques on data and task domain to gain 
efficiency. Thus the developers of GRASS modules or satellite 
image processing applications need to solve the problem of both 
data and task distribution, or how to distribute data and tasks 
among single or multiple clusters environment. The workload in 
HPC, the bandwidth, the processors speed, parameters of 
evaluation methods and data size are additional concerning 
factors.  
 
Developing GRASS module framework on HPC, three case 
studies, i.e. i) “i.vi” is developed by Kamble and Chemin (2006) 
to process 13 vegetation indices, ii) “i.lmf” is developed by 
Akhter et al. (2008b) to remove the atmospheric effects from RS 
images and iii) “r.gaswap” is developed by Akhter et al. (2006) 
to find out the crop parameters those are not directly visible 
from RS images, are discussed.  The foremost case study (i.vi) 
discusses the interoperability framework designing issues 
between the GRASS tool and HPC. The second case study 
discuss about the satellite image data distribution issues and the 
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final case study discusses the processing level data and task 
distribution on both cluster and grid platforms. Thus, the three 
case studies enable to run GRASS GIS environment for RS 
images processing on HPC systems and discuss the performance 
improvement issues also.  
 
 

2. METHODOLOGY DEVELOPMENT AND 
EXPERIMENTS  

2.1 Case Study 1: GRASS and HPC Interoperability 
Framework  

Developing the methodology, which enables to run GRASS GIS 
environment for satellite image processing on distributed 
computing systems, is the main concerning issue here. 
Additionally, three different implementation methodologies for 
distributed i.vi are discussed for three different programming 
platforms MPI (MPI, 2007), Nin-G (Ninf-G, 2007) (Tanaka et 
al, 2003) and OpenMP (Akhter, S. and Roberts, J., 2006). 
GRASS module i.vi is developed by (Kamble et al., 2006), and 
is used as a test example for this study. GRASS module i.vi, is 
used to process 13 different Vegetation Indices (VI) for the 
satellite images (Akhter et al., 2008b).  
 
Grass module i.vi works with raster images (rows x columns). 
Different band raster images are required for different indices. 
The generic indices (NDVI, RVI etc) use red and nir�near 
infrared�band images. However, arvi uses red, nir and blue 
band images, GVI uses red, nir, blue, green, chan5 and chan7 of 
landsat images and GARI uses red, nir, blue, green band images. 
GRASS functions are used to extract row wise data from the 
specific band images and store them in buffers. Then, each 
column value is extracted sequentially from the buffers and 
sends them for generating the specific VI values. Thus, after 
completing the VI from row buffers, the row wise VI values are 
put back into output image and this process will continue for 
each row. Figure 1 presents the structure of serial running i.vi 
module (for simplicity, only two band images are presented).   
 
Master-worker approach has been taken to distribute i.vi 
module in MPI and Ninf-G platforms. The master process runs 
in the GRASS environment, and decomposes the target images 
in rows and dispatches the computation of rows to multiple 
worker processes. Worker processes are free from GRASS, they 
just run the computation and send back the row wise result to 
the master process. The module i.vi is implemented using MPI 
on a PC cluster system (i.vi.mpi) and Ninf-G on the same PC 
cluster system (i.vi.grid) to hold the similarity between the 
experimental environments. However, i.vi.grid module has been 
structured as it is capable to run in distributed GRID system. In 
Figure 2, the implementing structure of distributed i.vi is 
presented (for simplicity only two band images have been 
presented). Here, S1, S2,.....,Sn are different worker processes. 
However, OpenMP, a shared memory and multi-threading 
approach, whereby the master "thread" executes a series of 
instructions consecutively and calls a specified number of slave 
"threads" to divide the tasks among them. The threads then run 
concurrently to execute a block of tasks in parallel. In our 
GRASS OpenMP implementation (i.vi.omp) multiple threads 
execute the computation of a row (all columns) concurrently. 
Each cpu core is responsible to process each thread. The 
i.vi.omp runs in similar style of serial module under GRASS 
environment. 
 

 
 

Figure 1: Serially Running i.vi Module Structure 
 

 
Figure 2: Distributed i.vi Module Structure 

 

 
Figure 3:  i.vi Module Performance Evaluation: Serial, MPI and 

Ninf-G Implementations 
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Figure 4: Parallel i.vi Performance with OpenMP and MPI 
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2.1.1 Experiments: The details MPI and Ninf-G 
implementations and performance comparisons were presented 
in (Akhter et al., 2008b) and the results (Figure 3) concluded 
that the i.vi MPI implementation performs better than Serial and 
Ninf-G implementations in a single cluster with 4 computing 
nodes. However, OpenMP performance was not been integrated. 
Running GRASS module with OpenMP requires to enable the –
fopenmp flag and gomp libraries support. GRASS version 7 and 
gcc compiler > 4.0 are the additional compulsory requirements 
(GRASSWiki, 2010). Figure 4 presents the performance of i.vi 
with OpenMP (i.vi.omp) and MPI (i.vi.mpi) implementations. 
OpenMP version is implemented in a single node with 4 cpu 
cores platform where as the MPI version using 2 machines with 
2 cpu cores each. According to Figure 4, the OpenMP 
implementation is performing better than the MPI 
implementation. Data distribution workload in MPI 
implementation is the main performance bottleneck. OpenMP 
implementation shares the same memory so data distribution 
workload is absent here.  

2.2 Case Study 2: Satellite Image Data Distribution Issues  

The Local Maximum Fitting (LMF) (Sawada et al., 2001) uses 
temporally splined procedure by combining the time series 
filtering and functional fitting for removing the clouds, hazes 
and other atmospheric effects from time series data of each pixel 
and ensure the data consistency (Sawada et al., 2002). OpenMP 
based LMF was initially implemented in (Sawada et al., 2005). 
A cluster based parallel LMF procedure was approached and 
implemented in (Akhter et al., 2007).  
 
Data distribution methodology became necessary to address the 
Asia regional yearly temporal MODIS images (46 bands, 3932 
rows and 11652 columns). A script is developed to read each 
row from all temporal images and stack them together to 
formulate a row-image. Each row-image is then passed into the 
parallel LMF model for processing. Although, working with the 
Row Distribution approach on the Asia regional MODIS images 
a LMF software limitation, increasing the column numbers 
more than 7000 creates a software segmentation fault, was 
traced. This happens because of the data storing constraint 
inside the LMF programming environment. As a result, both 
row-wise and column-wise data distribution mechanism is 
required and implemented.  
 
In this methodology, all the temporal images in column 
direction are virtually (programmatically) partitioned into a 
desirable block. The block window size (BWS) needs to be 
chosen according to the image data type. We used a threshold 
value (7000) for window size selection so that the column data 
will be equally distributed. Thus, from each column portion, 
each row of all temporal images will be merged together to 
become a row image and then processed by LMF program. The 
image formulation scenarios of the Row and Row Column 
Distribution are presented in Figure 5. In the Row Column 
Distribution, two images with BWS=2 (Image1, Image2) have 
been formulated from each row of all temporal images.  
 
2.2.1 Experiments: In Figure 6, both data distribution 
scenarios are implemented with Ninf-G programming platforms. 
It seems Row Column Distribution takes much time than the 
row distribution. This is a usual scenario in distributed 
computing aspects. More partitioning in the image, creates more 
data distributions (sending and receiving), much more timing.  

 

 

 
 
Figure 5: Image Formulation with Data Distribution Strategies 
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Figure 6: Run time comparison of Row Distribution and Row 
Column Distribution is a Single Cluster Implementation 

  

 
Figure 7: Time Comparison of Asynchronous and 

Synchronous Call 
 
However, increasing computing nodes trends to reduce the 
runtime to the same level influenced to implement in Grid or 
multi-cluster based system with much more computing 
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resources. According to the grid implementation of Row 
Column Distribution achieves 27.1% speedup with three 
clusters implementation from single cluster implementation. 
Additionally, Row Column Distribution on three clusters 
implementation gain 12% speedup over Row Distribution in 
single cluster implementation. Thus, grid based implementation 
can reduce the additional overhead by the Row Column 
Distribution. 
 
Additionally, Ninf-G itself contains two different 
implementations (API Reference, 2008), Synchronous and 
Asynchronous, for data distribution. In Synchronous calling, 
client waits until the completion of the computation on the 
server side. Asynchronous call returns immediately after all the 
arguments have been sent. Figure 7 presents a comparison of 
Ninf-G calling systems for LMF processing. Both calling 
systems show nearly same performance in single cluster 
environment. However, their performance is different in multi-
clusters environment. Asynchronous call seems faster than 
Synchronous call. This is happening because Asynchronous 
calling strategy provides a load balancing job distribution as 
First Come First Serve (FCFS). Thus, the fastest cluster will 
process more jobs than slower clusters. On the other side, 
Synchronous calling waits till one distribution of the submitted 
jobs to the clusters will not be finished. It means that due to the 
slowest performing cluster the overall performance will be 
delayed.  
 
2.3 Case Study 3: Processing Level Data and Task 
Distribution Issues  

SWAP-GA (Akhter et al., 2008a) is a combined model of the 
SWAP (Soil Water Atmosphere and Plant) crop model and the 
Remote Sensing (RS) data assimilation technique, which is 
optimized by Genetic Algorithm (GA). SWAP-GA is used to 
find out the crop parameters those are not directly visible from 
RS images. “r.gaswap”, a GRASS module developed by Akhter 
et al. (2006), enables SWAP-GA to run inside GRASS 
environment. 
 
The full SWAP-GA executable module is made with 
RSImageAccess, GASWAP, and Evaluation sub-modules. The 
RSImageAccess module is the main module, where the program 
starts. This module extracts the pixel value and the date for each 
image from the GRASS environment, and it calls this GASWAP 
module. The GASWAP module is able to run GA and 
completes the assimilation process. The Evaluation module runs 
the SWAP executable for each population and sends the 
simulated results to the GASWAP module. An example with 15 
pixels image, 60 populations and 10 generations gives a clear 
view of calling procedures inside the SWAP-GA model. 
Particularly, in this case, the RSImageAccess module will call 
the GASWAP module 15 times (one for each pixel). For each 
pixel, the GASWAP module first internally executes the SWAP 
executable 60 times to initialize the simulated pixel value for 
every population and then calls the Evaluation module 10 times 
(one for each generation). For each generation, the Evaluation 
module executes the SWAP executable 60 times and produces 
simulated pixel values for 60 populations. A high demand of 
parallel computing is called for inside the whole SWAP-GA 
module. Three different strategies are applied to work SWAP-
GA in a parallel manner. 
 
The strategies are presented by the following approaches: i) 
Data Distribution Approach, ii) Task Distribution Approach, iii) 
Combined Data and Task Distribution Approach. 

 
Table 1: Execution Time in Single Site 

 
2.3.1 The Data Distribution Approach: The Data 
Distribution approach is implemented on the Grid using Ninf-G. 
The Master-worker paradigm is used for parallelization in the 
distributed SWAP-GA model. Inside the master node, the 
RSImageAccess module works, whereas in the worker nodes 
assimilation procedures (GASWAP and Evaluation modules) 
run. The RSImageAccess module, running as Ninf-G client, 
dispatches a set of pixels to the remote PC cluster. In the remote 
PC cluster, the GASWAP module and the Evaluation module, 
running as a Ninf-G server, perform a computation for each 
pixel, where the computations inside the PC cluster are 
distributed among computing nodes through the local batch 
scheduler in FCFS manner. 
 
2.3.2 The Task Distribution Approach: An evaluation 
procedure is called for each population to execute the SWAP 
executable. Thus, the Evaluation module (to evaluate 
population) can be distributed through Ninf-G. Here, the master 
node runs both the RSImageAccess and the GASWAP module, 
and worker nodes only run the Evaluation module. The 
GASWAP module, running as a Ninf-G client, dispatches a set 
of populations to the remote PC cluster. In the remote PC 
cluster, the Evaluation module, running as a Ninf-G server, 
performs an evaluation for each population. The computation 
inside the PC clusters is distributed among computing nodes 
through the local batch scheduler. 
 
2.3.3 The Combined Data and Task Distribution 
Approach: So far, the above two approaches are running with 
Ninf-G, whereas this third approach is implemented with 
combined Ninf-G and MPI and called the Combined 
Distribution model. The idea of the Combined Distribution 
approach is to distribute the computation of pixels and 
populations in a hierarchical way. Here, the master node runs 
the RSImageAccess module and distributes a pixel to the 
gateway node, or the master node of the remote PC clusters with 
Ninf-G to invoke the GASWAP module. The approach is 
similar to the Data Distribution. After getting the pixel value, 
the master node (GASWAP) dispatches the populations to 
worker nodes (inside cluster) using MPI to run the Evaluation 
modules and this is similar to the Task Distribution Approach.   
 

Computing Nodes Implementation 

Strategy 
1 2 15 

Serial SWAP-GA 27,026 
(sec) 

_ _ 

Data Distribution 17,382 

(sec) 

9,276 

(sec) 

1,218 

(sec) 

Task Distribution 19,745 
(sec) 

10,941 
(sec) 

4,031 
(sec) 

Combined 
Distribution 

_ 18,216�

(sec) 

3,152 

(sec) 
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2.3.4 Experiments: Table 1 presents the running time 
comparison of the SWAP-GA serial model with the parallel 
SWAP-GA models with Computing Nodes 1, 2 and 15 on a 
single cluster. With 15 nodes, the performance of parallel 
models is improved. According to the distribution approaches, 
the Data Distribution approach performs better than others. In 
the Data Distribution approach, the dispatched workload (one 
whole pixel evaluation) is bigger and the communication 
overhead is hidden through the computing workload. Whereas, 
in the Task Distribution approach, Ninf-G calls happen 
frequently (once to evaluate the assigned populations set for 
each generation) and the workload to the computing nodes is 
not sufficient to gain the efficient parallelism. Additionally, 
Ninf-G takes some time for each RPC to establish and to close 
the session with computing nodes. On the other hand, to reduce 
the Ninf-G session establishment cost, the Combined Data and 
Task Distribution approach is presented where (inside the 
cluster) MPI reduces the session establishment cost (that was 
taken by Ninf-G) and the performance is improved. However, 
the performance of the combined approach is not superior to the 
Data Distribution approach. The same numbers of Ninf-G calls 
are conducted in both the Data Distribution and the Combined 
Distribution approaches. However, the Combined Distribution 
approach takes sometime for MPI communication. 
 
Table 2 presents the additional experimental results on the real 
Grid testbed (multiple sites) with the Combined Data and Task 
Distribution Approach and the Data Distribution Approach with 
15 pixels, 10 generations and 60 populations. The best 
performance for the Data Distribution approach was achieved in 
the single site experiment (1,378 sec). However, the Grid with 
more CPU power makes the Combined Distribution approach 
performance (922 sec) better than the best performance of the 
Data Distribution approach. Table 2 highlight the major 
drawback of the Data Distribution approach, when the pixel 
amount is diminutive compared to the computing nodes number. 
For this particular workload (with 15 pixels, 10 generations and 
60 populations) more than 15 nodes will not create any 
advanced effects on the Data Distribution approach whereas the 
door is open for the Combined Distribution approach to use 
more than 15 computing nodes (at most 60 nodes in each 
cluster). However, the Combined Distribution approach 
performance greatly depends on the number of clusters as well 
as the number of computing nodes in each cluster. So, when the 
cluster number is equal to the pixel number and the computing 
node number inside each cluster is equal to the population 
number, it may provide the best performance for the Combined 
Distribution approach. 
 

3. CONCLUSION 

The three case studies concern on the three different 
implementation phases of GRASS GIS on HPC. The foremost 
case study concerns on the interoperability framework for 
GRASS and HPC and that has been successfully implemented 
with three different programming frameworks. OpenMP 
performance seems better than MPI and Ninf-G 
implementations. However, the performance on parallel 
implementation differs on the data distribution and task 
distribution issues. The second case study focuses on the image 
level data distribution to multiple computing nodes. Partitioning 
in the image data creates more process to work in parallel and 
that reflects more communication overhead. Additional 
computing power hides the communication overhead by 
increasing the processing efficiency. The third case study  

 
Table 2: Execution Time on Multiple Sites 

 
concerns on the processing level distribution issues. The 
processing codes or software itself can work in parallel by 
distributing independent coding modules to process with 
different computing nodes. Additionally, single or combined 
programming frameworks can improve the whole performance 
however, that needs to be chosen according to the coding 
structures, processing time, available computing resources, 
communication overhead etc.  
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