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Abstract. Many geospatial models are developed using command line modules 
of GIS packages. To utilize scientific workflow technology in geospatial 
modeling, it is important to support command line GIS modules in scientific 
workflow systems. However, straightforward representation of command line 
modules as workflow components conflicts with conventional conceptual 
design patterns. We propose a two-step geospatial scientific workflow 
composition approach. Simple conceptual workflows are composed in the first 
step.  These allow data type-based workflow validation. The validated 
conceptual workflows are then transformed automatically into executable 
workflows using command line modules in the second step. We describe the 
preliminary implementation of the proposed approach in the Kepler scientific 
workflow system and demonstrate its feasibility using an example.  

1. Introduction 

Traditional geospatial data processing functions are provided in the form of 
command line modules. They take a set of control options, a set of input/output file 
names, transform input files into output files and optionally output resulting messages 
to standard output devices (e.g. screen). The Geographic Resources Analysis Support 
System (GRASS) is the most widely used open source Geographical Information 
System (GIS) package. Originally developed by U.S. Army Construction Engineering 
Research Laboratories in 1982, GRASS has evolved into a large system that consists 
of more than two hundred command line modules ranging from 2D vector/raster data 
analysis to 3D visualization and image processing [1].  

Scientific Workflow technologies have attracted considerable research and 
application interests during the past years under the framework of grid computing. In 
a scientific workflow, data are passed as tokens through component ports, which must 
be wired for the specific data type expected.  Ports can also be used to pass additional 

                                                           
1 This work is supported in part by DARPA  grant # N00017-03-1-0090 and NSF grant ITR #0225665 

SEEK 
 



specifications required for a particular processing unit, as is the case with components 
based on command line modules.  Configure of the additional ports is based on the 
syntactic requirements of the command line modules.  Therefore, workflow 
composition from command line GIS modules can be partially automated by making 
use of the embedded syntax to handle the additional details, freeing the application 
developer (domain specialist) to focus on the more conceptual aspects of the 
workflow. 

The most straightforward representation of command line modules as workflow 
components is to treat the control options and the input/output file names as the inputs 
of a workflow processing unit. The outputs can be text messages and/or an exit code. 
However, the conventional conceptual design pattern, i.e., inputs-processing-outputs, 
is greatly encumbered by representing this subsidiary information along with the 
high-level information during workflow design.  Not only do the control options and 
file names clutter the conceptual workflow, the representation is not intuitive for a 
domain user.  For example, the output data of a conceptual processing unit is treated 
as an output but the file name associated with the output data in the corresponding 
executable processing unit is treated as an input. In addition, it is very difficult to 
perform semantic validation on workflows that use command line modules based on 
the compatibility of the input/output data types of the workflow components, because 
all the input file names are string data type and all the exit codes are integer data type.  

We propose a two-step approach to compositing geospatial processing workflows: 
the first step composes a conceptual workflow and the conceptual workflow is 
transformed automatically into an executable workflow using the embedded 
information in the command line modules in the second step. The conceptual 
workflow is closer to users’ perception of geospatial processing, which uses semantic 
geospatial data types (such as vector/raster/tin). The processing units in the 
conceptual workflows are abstractions of command line modules. Semantic 
validations can be performed on the conceptual workflows. Only the validated 
conceptual workflows are allowed to be transformed to executable workflows. The 
processing units in the executable workflows correspond to the command line 
modules at the syntactic level. When the executable workflow is executed, the 
command line options and input/output file names are obtained automatically from 
the workflow processing units. They are fed to GRASS GIS command line modules 
that can be either invoked directly within the processing units or output scripts for 
future execution. While the implementations of the proposed approach are specific for 
the Kepler scientific workflow system ([2]), we believe the approach is applicable to 
other scientific workflow systems as well. The proposed approach is motivated by the 
work in [3] and specifically aims at using command line modules in scientific 
workflow systems.  

The rest of the paper is arranged as follows. Section 2 introduces the Kepler 
scientific workflow system. Section 3 describes the mapping rules between the 
command line parameters of GRASS GIS modules and the executable processing unit 
configurations. Section 4 presents the proposed automatic transformation approach 
and provides technical details of the implementations. Section 5 is the demonstration 
and finally section 6 is the summary and future work directions. 



2. Kepler Scientific Workflow System  

Kepler [2] builds upon the mature, dataflow-oriented Ptolemy II system (Ptolemy 
[4]). Ptolemy controls the execution of a workflow via so-called directors that 
represent models of computation. Individual workflow steps are implemented as 
reusable actors that can represent data sources, sinks, data transformers, analytical 
steps, or arbitrary computational steps. An actor can have multiple input and output 
ports, through which streams of data tokens flow. Additionally, actors may have 
parameters to define specific behavior. An illustration is shown in Fig. 1. Note that 
Parameter Port is an extension of regular IO Port and its value can either be preset 
using an associated parameter or updated by the connecting port dynamically as a 
regular IO Port. Kepler inherits and extends these advanced features from Ptolemy 
and adds several new features for scientific workflows, such as ontology-based data 
and actor searching, semantic type checking and advanced object management for 
distributed execution of workflows.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1 Illustration of Basic Components in Kepler Scientific Workflow System 
 

Kepler provides an annotated library of workflow components (directors, actors, 
parameters, etc.). When users drag and drop them into the workflow composition 
canvas, the data associated with the workflow components are added to the workflow 
model. Actors and the ports associated with the actors are rendered graphically. Users 
can then connect two ports or a port and a relation (or creating a link in Ptolemy 
terminology) by dragging and dropping as well. The workflow composition canvas 
allows typical types of zooming (in/out/fit) and automatic layout. The automatic 
layout in conjunction with manual adjustments can produce nice visualizations of 
workflows. In addition, Kepler provides a panner (or a miniature map) to navigate 
users through complex workflows in a convenient manor.  

Workflow components in Kepler/Ptolemy can be specified in XML using 
Ptolemy’s Model Markup Language (MoML, [4]). Ports and parameters of actors can 
be added dynamically by modifying the actors’ MoML elements. This feature allows 
create actors to represent command line modules in a GIS package using a single 

Consumer 
Actor 

Director 

RelationProducer 
r Acto

Consumer 
Actor 

 
IO Port 

Parameter Port 

Link 



place-holder actor without actual programming. The composed workflows are 
internally represented as MoML documents as well. Fig. 2 shows a fraction of MoML 
document that adds a parameter (property) called “comments” and two IO ports 
(input_dt and output_dt). It uses a placeholder actor called “util.ConceptActor” to 
instantiate a geospatial processing actor called “r_buffer” that corresponds to 
“r.buffer” module in GRASS GIS package. Note that the “.” symbol in GRASS 
module naming convention is replaced with “_” in MoML because it is reversed for 
denoting naming hierarchy in Ptolemy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 MoML representation of conceptual actor corresponding to r.buffer 

<?xml version="1.0" standalone="no"?> 
<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN" 
    "http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd"> 
<group> 
 
<entity name="r_buffer" class="util.ConceptActor"> 
 <property name="comments" class="ptolemy.data.expr.StringParameter" value="Creates a raster 

map layer showing buffer zones surrounding cells that contain non-NULL category values."> 
  <property name="_style" class="ptolemy.actor.gui.style.NotEditableLineStyle"/> 
 </property> 
 <port name="input_dt" class="ptolemy.actor.TypedIOPort"> 
  <property name="input"/> 
  <property name="type" class="ptolemy.actor.TypeAttribute" value="string"/>

   
 </port> 
 <port name="output_dt" class="ptolemy.actor.TypedIOPort"> 
  <property name="output"/> 
  <property name="type" class="ptolemy.actor.TypeAttribute" value="string"/> 
 </port> 
</entity> 
 
</group> 

3. Preparing Actor Libraries  

We have developed two separate workflow component libraries. The conceptual 
workflow component library includes actors necessary for conceptual workflow 
composition termed as “conceptual actors”. They are jointly developed by Kepler 
workflow experts and GRASS GIS experts. Basically these conceptual actors are the 
abstractions of GRASS GIS modules focusing on input and output data types. 
Controls and optional parameters associated with the GRASS GIS modules are 
ignored in the conceptual actors for simplicity.  

The executable workflow component library includes actors syntactically 
corresponding to GRASS GIS modules. Similarly they are termed as “executable 
actors”. The mapping rules are as follows:  

1. Each GRASS GIS module is mapped to an “Entity” in the Kepler executable 
actor library. The name of the entity is the same as the GRASS GIS module 
and the same as the corresponding conceptual actor.  



2. Each mandatory GRASS GIS parameter is mapped to a “TypedIOPort” in 
the library. If the parameter is a file name, then “_fn” is appended to the 
name of the port.  

3. Each optional GRASS GIS parameter is mapped to a “PortParameter” which 
can serve both as a port and a parameter in Kepler. If the associated port of 
PortParameter is connected to an output port, then its value is updated by the 
output port dynamically. Otherwise the value of the PortParameter is given 
at the time the actor is created or the parameter is modified.  

4. Each control option (“such as “-a”, “-l”) is mapped to a “Parameter” with a 
“CheckBoxStyle”. The value of the parameter will be either true (the option 
is set) or false (otherwise).  

5. Two additional “StringParameters” are added to each executable actor whose 
contents are retrieved from GRASS GIS manual. Parameter “comments” 
describes the functionality of the module. Parameter “commandline” 
describes the command line syntax of the module. These two parameters are 
non-functional and for illustration and tutorial purposes only. Thus they are 
set to “NotEditableLineStyle” indicating read-only.  

6. For the parameters in GRASS GIS modules that require choosing one among 
a limited number of candidates, mandatory or optional, “ChoiceStyle” is 
used for the corresponding “TypedIOPort” or “PortParameter” and the 
candidates are used as the properties of the style. The properties are rendered 
as the items in a dropdown list in Kepler GUI.  

7. For the parameters in GRASS GIS modules that require choosing multiple 
items among a limited number of candidates, mandatory or optional, all the 
candidates are concatenated as a string. The leading “{“and ending “}” 
symbols are added to the string to indicate the multiplicity. A property called 
“_stringMode” is added to the corresponding “TypedIOPort” or 
“PortParameter” to avoid being evaluated as an expression. This walk-
around approach is mostly because Kepler GUI currently does not support 
multiple choices from a dropdown list.  

8. For the parameters in GRASS GIS modules that require multiple numeric 
(integer or real) numbers, the default values are concatenated to strings using 
comma as the separation symbol. Thus the ports are essentially string data 
type and require adding property “_stringMode”. The leading “{“and ending 
“}” symbols are added as well to indicate the multiplicity nature of the 
parameters similar to rule 7.  

9. An input port (called “input_trigger”) and an output port (called 
“output_trigger”) are added to each executable actor, both are boolean type. 
The “output_trigger” is used to send a successful/failure token to the 
“input_trigger” port of the connecting actor. The links between 
“output_trigger” ports and “input_trigger” ports define the topology of a 
workflow.  

 
The executable actor that corresponds to the r_buffer conceptual actor in Fig. 2 is 

shown in Fig. 3. The graphical representations of the executable actor are shown in 
Fig. 4.  

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 MoML representation of executable actor corresponding to r.buffer 
 
To correctly capture control options and parameters of a GRASS GIS module that 

an executable actor represents, “util.ExecActor” (c.f. Fig. 3) does much more work 
than “util.ConceptActor” (c.f. Fig. 2) which is mostly a placeholder. When an 
instance of ExecActor is executed (or “fired” in Ptolemy terminology), the name of 
the actor is obtained as the initial value of the command line string. Second, the actor 
checks all its parameters. If the names of the parameters begin with “-“, then they are 
treated as control options (c.f. rule 4). If the value of such a parameter is “true” then 
its name (such as “-a”) is appended to the command line string. Third, the actor 

<entity name="r_buffer" class="util.ExecActor"> 
 <property name="comments" class="ptolemy.data.expr.StringParameter" value="Creates a raster map layer 

showing buffer zones surrounding cells that contain non-NULL category values."> 
  <property name="_style" class="ptolemy.actor.gui.style.NotEditableLineStyle"/> 
 </property> 
 <property name="commandline" class="ptolemy.data.expr.StringParameter" value="r_buffer [-qz] input=float 

output=string distances=float[,float,...] [units=string]"> 
  <property name="_style" class="ptolemy.actor.gui.style.NotEditableLineStyle"/> 
 </property> 
 <property name="-q(Run quietly)" class="ptolemy.data.expr.Parameter" value="false"> 
  <property name="style" class="ptolemy.actor.gui.style.CheckBoxStyle"/> 
 </property> 
 <property name="-z(Ignore zero (0) data cells instead of NULL cells)" class="ptolemy.data.expr.Parameter" 

value="false"> 
  <property name="style" class="ptolemy.actor.gui.style.CheckBoxStyle"/> 
 </property> 
 <port name="input_trigger" class="ptolemy.actor.TypedIOPort"> 
  <property name="input"/> 
  <property name="type" class="ptolemy.actor.TypeAttribute" value="boolean"/> 
 </port>  
 <port name="input_fn" class="ptolemy.actor.TypedIOPort"> 
  <property name="input"/> 
  <property name="type" class="ptolemy.actor.TypeAttribute" value="string"/> 
 </port> 
 <port name="output_fn" class="ptolemy.actor.TypedIOPort"> 
  <property name="input"/> 
  <property name="type" class="ptolemy.actor.TypeAttribute" value="string"/> 
 </port> 
 <property name="distances" class="ptolemy.actor.parameters.PortParameter" value="{1.0}"/> 
        <property name="units" class="ptolemy.actor.parameters.PortParameter" value="meters"> 
         <property name="_stringMode"/> 
  <property name="style" class="ptolemy.actor.gui.style.ChoiceStyle"> 
   <property name="C0" class="ptolemy.kernel.util.StringAttribute" value="meters"/> 
   <property name="C1" class="ptolemy.kernel.util.StringAttribute" value="kilometers"/> 
   <property name="C2" class="ptolemy.kernel.util.StringAttribute" value="feet"/> 
   <property name="C3" class="ptolemy.kernel.util.StringAttribute" value="miles"/> 
   <property name="C4" class="ptolemy.kernel.util.StringAttribute" value="nautmiles"/> 
  </property> 
        </property> 
 <port name="output_trigger" class="ptolemy.actor.TypedIOPort"> 
  <property name="output"/> 
  <property name="type" class="ptolemy.actor.TypeAttribute" value="boolean"/> 
 </port> 
</entity> 



checks the input ports of the executable actor. If the width of the port is zero, which 
means no data is fed to the port (if the port is a ParameterPort rather than a regular 
port), the persistent value of the port is obtained. Otherwise the value is obtained from 
a regular port dynamically (c.f. rule 3). For the port values end with “_fn” or 
embraced by “{” and “}” pair, they are trimmed from the port values (c.f. rules 2, 7 
and 8). The port names and the trimmed port values form “key=value” pairs and will 
be appended to the command line string. Once building the command line string is 
finished, a true value is send to the actor’s output indicator (output_trigger) port to tell 
the workflow execution scheduler to execute next actor (c.f. rule 9). The command 
line string can either be used to invoke the GRASS GIS module within the actor 
execution process or output as part of the script file to be executed in a local or remote 
computation grid. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Graphical representations executable actor r_buffer 
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4. Automatic Transformation 

Supported by Kepler scientific workflow system infrastructure and the rules for 
mapping GRASS GIS command line modules to executable actors, we can now 
present the algorithm to automatically transform conceptual workflows to executable 
workflows.  



1. For each conceptual actor in a conceptual workflow, find the corresponding 
executable actor by looking up its name in the executable actor library (c.f. rule 
1).  

2. For each connecting conceptual actor pair, find the port named “output_trigger” 
from the executable actor corresponding to the source conceptual actor and the 
port named “input_trigger” from the executable actor corresponding to the 
destination conceptual actor. Connect the two ports in the executable workflow 
(c.f. rule 9).  

3. For each output port of the conceptual actors, find its connecting input port. If the 
names of the two connecting ports both ends with “_dt”, find the ports with the 
same roots but ending with “_fn” in the corresponding executable actors, create a 
Const actor (representing a file name) and connect the output port of the Const 
actor to the input ports of the two executable actors in the executable workflow 
with a relation (c.f. rule 2).  

4. For each input port of the conceptual actors, if the port name ends with “_dt” and 
there is a port in the corresponding executable actor whose name has the same 
root but ends with “_fn”, create a Const actor (representing a file name) and 
connect the output port of the Const actor to the input port of the executable actor 
in the executable workflow with a relation (c.f. rule 2 again). 

5.  Layout the executable workflow.  
a. Executable actors are put at the same locations in the executable 

workflow as their corresponding conceptual actors in the conceptual 
workflow. The extent of the executable workflow on the composition 
canvas can be calculated.  

b. Put all the added Const actors at the left side of the executable 
workflow. All their x coordinates are assigned a fix number (e.g. 50). 
The y coordinate of the ith Const actor can be computed as i*h/n where h 
is the height of the previously calculated workflow extent at y direction 
and n is the number of added Const actors.  

c. For the added Const actors whose output ports connect more than one 
port, vertexes are added to the relation associated with the output ports. 
The added vertexes give more freedom to connect ports with straight 
lines and produce nicer workflow graphic representations (c.f. Fig. 5 in 
Section 5). 

While the automatic transformation algorithm reduces most of the needed efforts 
of executable workflow composition (adding actors representing file names, change 
input/output data ports of conceptual actors to input file name ports of executable 
actors and connect them correctly), manual post-processing may be required for some 
complex conceptual workflows. We are in the process of developing more 
sophisticated algorithms to handle complex conceptual workflows.  

5. Demonstration 

The demonstrative example is a simple workflow that creates a convex hull from a 
point data set using GRASS GIS’s v.hull module. The convex hull is then rasterized 



using the v.to.raster module. Finally the r.buffer module is used to create buffers 
around the convex hull. The conceptual workflow (Fig. 5 top) is fairly simple and 
each of the three actors has one input port and one output port. The abstract nature of 
the conceptual workflow is idea for validation. We are working towards data types 
based semantic workflow validation based on some previous work ([5][6]).  

 

v.hull –a input=f2 output=f0 
v.to.rast input=f0 layer=1 output=f1 use=attr value=1.0 rows=4096 
r.buffer –q input=f1 output=f3 distances=1.0 units=meters

Vertex

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Conceptual (top) and executable (bottom) workflows of the example 
 

The derived executable workflow (Fig. 5 bottom) is more complex than the 
conceptual workflow. However, the parameters and the ports of the executable 
workflow are syntactically compatible with the parameters of GRASS GIS modules. 



When the executable workflow is executed, GRASS GIS command line scripts can be 
generated from the executable workflow as shown in the lower part of Fig. 5.  

6. Summary and Future Work Directions 

We proposed a two-step approach to the composition of geospatial scientific 
workflows using open source GRASS GIS command line modules. Built on top of 
Kepler scientific workflow system infrastructure, we developed both conceptual and 
executable actor libraries for GRASS GIS command line modules. We also provided 
a practical algorithm to automatically transform conceptual workflows to executable 
workflows after users construct and validate the conceptual workflows. A 
demonstrative example was presented to show the feasibility of the proposed 
approach and the functionality of the preliminary implementations within Kepler.  

For future work, we would like to develop more sophisticated automatic 
transformation algorithms to handle complex conceptual workflows. While Kepler 
supports semantic type checking for conceptual workflow design, integration is left 
for future work. Furthermore, although the implementations currently support GRASS 
GIS modules only, including modules from other GIS package (such as ESRI 
ArcGIS) is planned.  
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