
Automatic Transformation from Geospatial Conceptual
Workflow to Executable Workflow Using GRASS GIS

Command Line Modules in Kepler1

Jianting Zhang, Deana D. Pennington, William K. Michener

LTER Network Office, the University of New Mexico,
MSC 03 2020, 1 University of New Mexico

Albuquerque, NM, 87131, USA
jzhang@lternet.edu

Abstract. Many geospatial models are developed using command line modules
of GIS packages. To utilize scientific workflow technology in geospatial
modeling, it is important to support command line GIS modules in scientific
workflow systems. However, straightforward representation of command line
modules as workflow components conflicts with conventional conceptual
design patterns. We propose a two-step geospatial scientific workflow
composition approach. Simple conceptual workflows are composed in the first
step. These allow data type-based workflow validation. The validated
conceptual workflows are then transformed automatically into executable
workflows using command line modules in the second step. We describe the
preliminary implementation of the proposed approach in the Kepler scientific
workflow system and demonstrate its feasibility using an example.

1. Introduction

Traditional geospatial data processing functions are provided in the form of
command line modules. They take a set of control options, a set of input/output file
names, transform input files into output files and optionally output resulting messages
to standard output devices (e.g. screen). The Geographic Resources Analysis Support
System (GRASS) is the most widely used open source Geographical Information
System (GIS) package. Originally developed by U.S. Army Construction Engineering
Research Laboratories in 1982, GRASS has evolved into a large system that consists
of more than two hundred command line modules ranging from 2D vector/raster data
analysis to 3D visualization and image processing [1].

Scientific Workflow technologies have attracted considerable research and
application interests during the past years under the framework of grid computing. In
a scientific workflow, data are passed as tokens through component ports, which must
be wired for the specific data type expected. Ports can also be used to pass additional

1 This work is supported in part by DARPA grant # N00017-03-1-0090 and NSF grant ITR #0225665

SEEK

specifications required for a particular processing unit, as is the case with components
based on command line modules. Configure of the additional ports is based on the
syntactic requirements of the command line modules. Therefore, workflow
composition from command line GIS modules can be partially automated by making
use of the embedded syntax to handle the additional details, freeing the application
developer (domain specialist) to focus on the more conceptual aspects of the
workflow.

The most straightforward representation of command line modules as workflow
components is to treat the control options and the input/output file names as the inputs
of a workflow processing unit. The outputs can be text messages and/or an exit code.
However, the conventional conceptual design pattern, i.e., inputs-processing-outputs,
is greatly encumbered by representing this subsidiary information along with the
high-level information during workflow design. Not only do the control options and
file names clutter the conceptual workflow, the representation is not intuitive for a
domain user. For example, the output data of a conceptual processing unit is treated
as an output but the file name associated with the output data in the corresponding
executable processing unit is treated as an input. In addition, it is very difficult to
perform semantic validation on workflows that use command line modules based on
the compatibility of the input/output data types of the workflow components, because
all the input file names are string data type and all the exit codes are integer data type.

We propose a two-step approach to compositing geospatial processing workflows:
the first step composes a conceptual workflow and the conceptual workflow is
transformed automatically into an executable workflow using the embedded
information in the command line modules in the second step. The conceptual
workflow is closer to users’ perception of geospatial processing, which uses semantic
geospatial data types (such as vector/raster/tin). The processing units in the
conceptual workflows are abstractions of command line modules. Semantic
validations can be performed on the conceptual workflows. Only the validated
conceptual workflows are allowed to be transformed to executable workflows. The
processing units in the executable workflows correspond to the command line
modules at the syntactic level. When the executable workflow is executed, the
command line options and input/output file names are obtained automatically from
the workflow processing units. They are fed to GRASS GIS command line modules
that can be either invoked directly within the processing units or output scripts for
future execution. While the implementations of the proposed approach are specific for
the Kepler scientific workflow system ([2]), we believe the approach is applicable to
other scientific workflow systems as well. The proposed approach is motivated by the
work in [3] and specifically aims at using command line modules in scientific
workflow systems.

The rest of the paper is arranged as follows. Section 2 introduces the Kepler
scientific workflow system. Section 3 describes the mapping rules between the
command line parameters of GRASS GIS modules and the executable processing unit
configurations. Section 4 presents the proposed automatic transformation approach
and provides technical details of the implementations. Section 5 is the demonstration
and finally section 6 is the summary and future work directions.

2. Kepler Scientific Workflow System

Kepler [2] builds upon the mature, dataflow-oriented Ptolemy II system (Ptolemy
[4]). Ptolemy controls the execution of a workflow via so-called directors that
represent models of computation. Individual workflow steps are implemented as
reusable actors that can represent data sources, sinks, data transformers, analytical
steps, or arbitrary computational steps. An actor can have multiple input and output
ports, through which streams of data tokens flow. Additionally, actors may have
parameters to define specific behavior. An illustration is shown in Fig. 1. Note that
Parameter Port is an extension of regular IO Port and its value can either be preset
using an associated parameter or updated by the connecting port dynamically as a
regular IO Port. Kepler inherits and extends these advanced features from Ptolemy
and adds several new features for scientific workflows, such as ontology-based data
and actor searching, semantic type checking and advanced object management for
distributed execution of workflows.

Fig. 1 Illustration of Basic Components in Kepler Scientific Workflow System

Kepler provides an annotated library of workflow components (directors, actors,
parameters, etc.). When users drag and drop them into the workflow composition
canvas, the data associated with the workflow components are added to the workflow
model. Actors and the ports associated with the actors are rendered graphically. Users
can then connect two ports or a port and a relation (or creating a link in Ptolemy
terminology) by dragging and dropping as well. The workflow composition canvas
allows typical types of zooming (in/out/fit) and automatic layout. The automatic
layout in conjunction with manual adjustments can produce nice visualizations of
workflows. In addition, Kepler provides a panner (or a miniature map) to navigate
users through complex workflows in a convenient manor.

Workflow components in Kepler/Ptolemy can be specified in XML using
Ptolemy’s Model Markup Language (MoML, [4]). Ports and parameters of actors can
be added dynamically by modifying the actors’ MoML elements. This feature allows
create actors to represent command line modules in a GIS package using a single

Consumer
Actor

Director

RelationProducer
r Acto

Consumer
Actor

IO Port

Parameter Port

Link

place-holder actor without actual programming. The composed workflows are
internally represented as MoML documents as well. Fig. 2 shows a fraction of MoML
document that adds a parameter (property) called “comments” and two IO ports
(input_dt and output_dt). It uses a placeholder actor called “util.ConceptActor” to
instantiate a geospatial processing actor called “r_buffer” that corresponds to
“r.buffer” module in GRASS GIS package. Note that the “.” symbol in GRASS
module naming convention is replaced with “_” in MoML because it is reversed for
denoting naming hierarchy in Ptolemy.

Fig. 2 MoML representation of conceptual actor corresponding to r.buffer

<?xml version="1.0" standalone="no"?>
<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
 "http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd">
<group>

<entity name="r_buffer" class="util.ConceptActor">
 <property name="comments" class="ptolemy.data.expr.StringParameter" value="Creates a raster

map layer showing buffer zones surrounding cells that contain non-NULL category values.">
 <property name="_style" class="ptolemy.actor.gui.style.NotEditableLineStyle"/>
 </property>
 <port name="input_dt" class="ptolemy.actor.TypedIOPort">
 <property name="input"/>
 <property name="type" class="ptolemy.actor.TypeAttribute" value="string"/>

 </port>
 <port name="output_dt" class="ptolemy.actor.TypedIOPort">
 <property name="output"/>
 <property name="type" class="ptolemy.actor.TypeAttribute" value="string"/>
 </port>
</entity>

</group>

3. Preparing Actor Libraries

We have developed two separate workflow component libraries. The conceptual
workflow component library includes actors necessary for conceptual workflow
composition termed as “conceptual actors”. They are jointly developed by Kepler
workflow experts and GRASS GIS experts. Basically these conceptual actors are the
abstractions of GRASS GIS modules focusing on input and output data types.
Controls and optional parameters associated with the GRASS GIS modules are
ignored in the conceptual actors for simplicity.

The executable workflow component library includes actors syntactically
corresponding to GRASS GIS modules. Similarly they are termed as “executable
actors”. The mapping rules are as follows:

1. Each GRASS GIS module is mapped to an “Entity” in the Kepler executable
actor library. The name of the entity is the same as the GRASS GIS module
and the same as the corresponding conceptual actor.

2. Each mandatory GRASS GIS parameter is mapped to a “TypedIOPort” in
the library. If the parameter is a file name, then “_fn” is appended to the
name of the port.

3. Each optional GRASS GIS parameter is mapped to a “PortParameter” which
can serve both as a port and a parameter in Kepler. If the associated port of
PortParameter is connected to an output port, then its value is updated by the
output port dynamically. Otherwise the value of the PortParameter is given
at the time the actor is created or the parameter is modified.

4. Each control option (“such as “-a”, “-l”) is mapped to a “Parameter” with a
“CheckBoxStyle”. The value of the parameter will be either true (the option
is set) or false (otherwise).

5. Two additional “StringParameters” are added to each executable actor whose
contents are retrieved from GRASS GIS manual. Parameter “comments”
describes the functionality of the module. Parameter “commandline”
describes the command line syntax of the module. These two parameters are
non-functional and for illustration and tutorial purposes only. Thus they are
set to “NotEditableLineStyle” indicating read-only.

6. For the parameters in GRASS GIS modules that require choosing one among
a limited number of candidates, mandatory or optional, “ChoiceStyle” is
used for the corresponding “TypedIOPort” or “PortParameter” and the
candidates are used as the properties of the style. The properties are rendered
as the items in a dropdown list in Kepler GUI.

7. For the parameters in GRASS GIS modules that require choosing multiple
items among a limited number of candidates, mandatory or optional, all the
candidates are concatenated as a string. The leading “{“and ending “}”
symbols are added to the string to indicate the multiplicity. A property called
“_stringMode” is added to the corresponding “TypedIOPort” or
“PortParameter” to avoid being evaluated as an expression. This walk-
around approach is mostly because Kepler GUI currently does not support
multiple choices from a dropdown list.

8. For the parameters in GRASS GIS modules that require multiple numeric
(integer or real) numbers, the default values are concatenated to strings using
comma as the separation symbol. Thus the ports are essentially string data
type and require adding property “_stringMode”. The leading “{“and ending
“}” symbols are added as well to indicate the multiplicity nature of the
parameters similar to rule 7.

9. An input port (called “input_trigger”) and an output port (called
“output_trigger”) are added to each executable actor, both are boolean type.
The “output_trigger” is used to send a successful/failure token to the
“input_trigger” port of the connecting actor. The links between
“output_trigger” ports and “input_trigger” ports define the topology of a
workflow.

The executable actor that corresponds to the r_buffer conceptual actor in Fig. 2 is

shown in Fig. 3. The graphical representations of the executable actor are shown in
Fig. 4.

Fig. 3 MoML representation of executable actor corresponding to r.buffer

To correctly capture control options and parameters of a GRASS GIS module that

an executable actor represents, “util.ExecActor” (c.f. Fig. 3) does much more work
than “util.ConceptActor” (c.f. Fig. 2) which is mostly a placeholder. When an
instance of ExecActor is executed (or “fired” in Ptolemy terminology), the name of
the actor is obtained as the initial value of the command line string. Second, the actor
checks all its parameters. If the names of the parameters begin with “-“, then they are
treated as control options (c.f. rule 4). If the value of such a parameter is “true” then
its name (such as “-a”) is appended to the command line string. Third, the actor

<entity name="r_buffer" class="util.ExecActor">
 <property name="comments" class="ptolemy.data.expr.StringParameter" value="Creates a raster map layer

showing buffer zones surrounding cells that contain non-NULL category values.">
 <property name="_style" class="ptolemy.actor.gui.style.NotEditableLineStyle"/>
 </property>
 <property name="commandline" class="ptolemy.data.expr.StringParameter" value="r_buffer [-qz] input=float

output=string distances=float[,float,...] [units=string]">
 <property name="_style" class="ptolemy.actor.gui.style.NotEditableLineStyle"/>
 </property>
 <property name="-q(Run quietly)" class="ptolemy.data.expr.Parameter" value="false">
 <property name="style" class="ptolemy.actor.gui.style.CheckBoxStyle"/>
 </property>
 <property name="-z(Ignore zero (0) data cells instead of NULL cells)" class="ptolemy.data.expr.Parameter"

value="false">
 <property name="style" class="ptolemy.actor.gui.style.CheckBoxStyle"/>
 </property>
 <port name="input_trigger" class="ptolemy.actor.TypedIOPort">
 <property name="input"/>
 <property name="type" class="ptolemy.actor.TypeAttribute" value="boolean"/>
 </port>
 <port name="input_fn" class="ptolemy.actor.TypedIOPort">
 <property name="input"/>
 <property name="type" class="ptolemy.actor.TypeAttribute" value="string"/>
 </port>
 <port name="output_fn" class="ptolemy.actor.TypedIOPort">
 <property name="input"/>
 <property name="type" class="ptolemy.actor.TypeAttribute" value="string"/>
 </port>
 <property name="distances" class="ptolemy.actor.parameters.PortParameter" value="{1.0}"/>
 <property name="units" class="ptolemy.actor.parameters.PortParameter" value="meters">
 <property name="_stringMode"/>
 <property name="style" class="ptolemy.actor.gui.style.ChoiceStyle">
 <property name="C0" class="ptolemy.kernel.util.StringAttribute" value="meters"/>
 <property name="C1" class="ptolemy.kernel.util.StringAttribute" value="kilometers"/>
 <property name="C2" class="ptolemy.kernel.util.StringAttribute" value="feet"/>
 <property name="C3" class="ptolemy.kernel.util.StringAttribute" value="miles"/>
 <property name="C4" class="ptolemy.kernel.util.StringAttribute" value="nautmiles"/>
 </property>
 </property>
 <port name="output_trigger" class="ptolemy.actor.TypedIOPort">
 <property name="output"/>
 <property name="type" class="ptolemy.actor.TypeAttribute" value="boolean"/>
 </port>
</entity>

checks the input ports of the executable actor. If the width of the port is zero, which
means no data is fed to the port (if the port is a ParameterPort rather than a regular
port), the persistent value of the port is obtained. Otherwise the value is obtained from
a regular port dynamically (c.f. rule 3). For the port values end with “_fn” or
embraced by “{” and “}” pair, they are trimmed from the port values (c.f. rules 2, 7
and 8). The port names and the trimmed port values form “key=value” pairs and will
be appended to the command line string. Once building the command line string is
finished, a true value is send to the actor’s output indicator (output_trigger) port to tell
the workflow execution scheduler to execute next actor (c.f. rule 9). The command
line string can either be used to invoke the GRASS GIS module within the actor
execution process or output as part of the script file to be executed in a local or remote
computation grid.

Fig. 4 Graphical representations executable actor r_buffer

IO Ports

PortParameter (with initial
values) and corresponding
ParameterPort

Multiple numeric values Single choice value

4. Automatic Transformation

Supported by Kepler scientific workflow system infrastructure and the rules for
mapping GRASS GIS command line modules to executable actors, we can now
present the algorithm to automatically transform conceptual workflows to executable
workflows.

1. For each conceptual actor in a conceptual workflow, find the corresponding
executable actor by looking up its name in the executable actor library (c.f. rule
1).

2. For each connecting conceptual actor pair, find the port named “output_trigger”
from the executable actor corresponding to the source conceptual actor and the
port named “input_trigger” from the executable actor corresponding to the
destination conceptual actor. Connect the two ports in the executable workflow
(c.f. rule 9).

3. For each output port of the conceptual actors, find its connecting input port. If the
names of the two connecting ports both ends with “_dt”, find the ports with the
same roots but ending with “_fn” in the corresponding executable actors, create a
Const actor (representing a file name) and connect the output port of the Const
actor to the input ports of the two executable actors in the executable workflow
with a relation (c.f. rule 2).

4. For each input port of the conceptual actors, if the port name ends with “_dt” and
there is a port in the corresponding executable actor whose name has the same
root but ends with “_fn”, create a Const actor (representing a file name) and
connect the output port of the Const actor to the input port of the executable actor
in the executable workflow with a relation (c.f. rule 2 again).

5. Layout the executable workflow.
a. Executable actors are put at the same locations in the executable

workflow as their corresponding conceptual actors in the conceptual
workflow. The extent of the executable workflow on the composition
canvas can be calculated.

b. Put all the added Const actors at the left side of the executable
workflow. All their x coordinates are assigned a fix number (e.g. 50).
The y coordinate of the ith Const actor can be computed as i*h/n where h
is the height of the previously calculated workflow extent at y direction
and n is the number of added Const actors.

c. For the added Const actors whose output ports connect more than one
port, vertexes are added to the relation associated with the output ports.
The added vertexes give more freedom to connect ports with straight
lines and produce nicer workflow graphic representations (c.f. Fig. 5 in
Section 5).

While the automatic transformation algorithm reduces most of the needed efforts
of executable workflow composition (adding actors representing file names, change
input/output data ports of conceptual actors to input file name ports of executable
actors and connect them correctly), manual post-processing may be required for some
complex conceptual workflows. We are in the process of developing more
sophisticated algorithms to handle complex conceptual workflows.

5. Demonstration

The demonstrative example is a simple workflow that creates a convex hull from a
point data set using GRASS GIS’s v.hull module. The convex hull is then rasterized

using the v.to.raster module. Finally the r.buffer module is used to create buffers
around the convex hull. The conceptual workflow (Fig. 5 top) is fairly simple and
each of the three actors has one input port and one output port. The abstract nature of
the conceptual workflow is idea for validation. We are working towards data types
based semantic workflow validation based on some previous work ([5][6]).

v.hull –a input=f2 output=f0
v.to.rast input=f0 layer=1 output=f1 use=attr value=1.0 rows=4096
r.buffer –q input=f1 output=f3 distances=1.0 units=meters

Vertex

Fig. 5 Conceptual (top) and executable (bottom) workflows of the example

The derived executable workflow (Fig. 5 bottom) is more complex than the
conceptual workflow. However, the parameters and the ports of the executable
workflow are syntactically compatible with the parameters of GRASS GIS modules.

When the executable workflow is executed, GRASS GIS command line scripts can be
generated from the executable workflow as shown in the lower part of Fig. 5.

6. Summary and Future Work Directions

We proposed a two-step approach to the composition of geospatial scientific
workflows using open source GRASS GIS command line modules. Built on top of
Kepler scientific workflow system infrastructure, we developed both conceptual and
executable actor libraries for GRASS GIS command line modules. We also provided
a practical algorithm to automatically transform conceptual workflows to executable
workflows after users construct and validate the conceptual workflows. A
demonstrative example was presented to show the feasibility of the proposed
approach and the functionality of the preliminary implementations within Kepler.

For future work, we would like to develop more sophisticated automatic
transformation algorithms to handle complex conceptual workflows. While Kepler
supports semantic type checking for conceptual workflow design, integration is left
for future work. Furthermore, although the implementations currently support GRASS
GIS modules only, including modules from other GIS package (such as ESRI
ArcGIS) is planned.

Reference

[1] GRASS Development Team, 2005. GRASS 6.0 Users Manual. ITC-irst,
Trento, Italy. Electronic document: http://grass.itc.it/grass60/manuals/html_grass60/

[2] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, S. Mock, 2004,
Kepler: An Extensible System for Design and Execution of Scientific Workflows, the
16th International Scientific and Statistical Database Management Conference
(SSDBM), 423-424

[3] B. Ludäscher, I. Altintas, A. Gupta, 2003, Compiling Abstract Scientific
Workflows into Web Service Workflows, the 15th International Scientific and
Statistical Database Management Conference (SSDBM), 251-254

[4] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, H. Zheng (eds.),
Heterogeneous Concurrent Modeling and Design in Java,
http://ptolemy.eecs.berkeley.edu/ptolemyII/

[5] S. Bowers, B. Ludäscher, 2005, Actor-Oriented Design of Scientific
Workflows, the 24th International Conference on Conceptual Modeling, 369-384

[6] J. Zhang, D. Pennington, W.K. Michener, 2005, Validating Compositions of
Geospatial Processing Web Services in a Scientific Workflow Environment, the 3rd
IEEE International Conference on Web Services (ICWS), 821-822

http://grass.itc.it/grass60/manuals/html_grass60/
http://ptolemy.eecs.berkeley.edu/ptolemyII/

