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1 Introduction 54 

1.1 Rationale 55 

Changes in Earth’s forest cover impact the cycling of water, energy, carbon and other 56 

nutrients, as well as the ability of ecosystems to support biodiversity and human economies. 57 

Knowledge of the patterns and rates of forest-cover change is critical to understand the 58 

causes and effects of land-use change (Band 1993; Lal 1995; Houghton 1998; Pandey 2002) 59 

and to manage ecosystems sustainably. A number of national and international programs 60 

have called for routine monitoring of global forest changes, including the Global Observation 61 

for Forest and Land Cover Dynamics (GOFC-GOLD) (Skole et al. 1998; Townshend et al. 62 

2004), Global Climate Observing System (GCOS 2004), and the U.S. Global Change Research 63 

Program (USGCRP 1999). An examination of the societal benefits defined by the Group on 64 

Earth Observations and the Strategic US Integrated Earth Observation System revealed that 65 

resolutions to all of these issues are dependent on regular and reliable land cover change 66 

monitoring (Townshend & Brady 2006).  67 

Coarsely scaled measurements of Earth’s forest cover have been produced at regional and 68 

national extents (Skole and Tucker 1993, Tucker and Townshend 2000, Steininger et al. 2001, 69 

DeFries et al. 2002, Zhang et al. 2005, Huang et al. 2007). However, most of these 70 

representations are static; and although a substantial proportion of change has been shown 71 

to occur at resolutions below 250 m (Townshend & Justice 1988), global assessments of 72 

forest cover and its changes at high-resolution are still in nascent stages of development 73 

while local and regional products (e.g., Lepers et al. 2005) lack consistency and 74 

comparability. Relying on national inputs and sampled remotely sensed data, the United 75 

Nations Food and Agriculture Organization (FAO) Forest Resource Assessment (FRA) carried 76 

out limited Landsat-based sampling of change detection to assist the estimation of global 77 

tropical forest change rates for 1990-2000 (FAO 2001). However, these sample-based 78 

assessments provide inadequate quantitative information on the distribution of change 79 

(Matthews and Grainger 2002, DeFries et al., 2002). 80 

The NASA Earth Science Data Record (ESDR) of Global Forest Cover (GFC) provides global 81 

forest cover and change (FCC) records at fine (30-m) and moderate- (250-m) spatial 82 

resolutions. Requirements for such products are specified in many documents, including the 83 

ESDR Community White Paper on Land Cover/Land Change (Masek et al. 2006a) and the 84 

Global Observations of Forest Cover/Land-Cover Dynamics (GOFC-GOLD) Fine-Resolution 85 

design documents (Skole et al. 1998, Townshend et al. 2004). Landsat-class resolutions are 86 

essential for detecting fine-scale changes, particularly those resulting from local 87 

anthropogenic factors. 88 

1.2 Objective 89 

Although the temporal span and resolution have undergone subsequent improvements, the 90 

original objective of this project was to provide a multi-temporal forest-cover Earth Science 91 

Data Record (ESDR) at global extent and fine- (i.e., 30-m, “Landsat-“) and moderate- (i.e., 92 

MODIS-) resolution. This record includes: 93 
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 Global, sub-hectare resolution estimates of surface reflectance for three epochs: 94 
1990, 2000, and 2005; 95 

 Fine-resolution forest cover change (FCC) estimates between the four epochs;  96 

 Fragmentation indices derived from the fine-resolution FCC products; 97 

 Subsets of the above products for world protected areas and surrounding buffer 98 
zones. 99 

1.3 Approach 100 

Global, spatially and temporally comprehensive forest-cover change Earth Science Data 101 

Records were inferred from high- (30-m) and moderate- (250-m) resolution satellite data. At 102 

30-m spatial resolution, forest cover and changes in and between 1990, 2000, and 2005 103 

were mapped using enhanced Global Land Survey (GLS+) data sets, supplemented with 104 

additional images where and when the GLS data were incomplete or inadequate for analysis 105 

(Tucker et al. 2004, Gutman et al. 2008, Channan et al. 2015). This effort also included 106 

production of surface reflectance ESDRs at 30-m resolution for 1990, 2000, and 2005, as well 107 

as fragmentation products based on the FCC records. (Note that the years 1990, 2000, and 108 

2005 for all fine-resolution data sets refer to nominal years throughout this proposal, but 109 

the actual acquisition year of the GLS+ data set varies from place to place due to cloud cover 110 

and image availability.)  111 

The fine-resolution ESDRs were produced using algorithms that have been implemented or 112 

are now implemented in the Landsat Ecosystem Disturbance Adaptive Processing System 113 

(LEDAPS), which was developed through previous NASA projects and includes algorithms for 114 

geometric orthorectification, radiometric normalization, and data quality screening. 115 

Atmospherically corrected surface reflectance, which is the basis for many other ESDRs and 116 

analyses, was generated as an intermediate product. For each year from 2000 to 2005, an 117 

enhanced moderate-resolution change product was generated as a secondary record of 118 

forest-cover change. We also generated products to quantify and monitor fragmentation. 119 

Efforts were restricted to mapping per-pixel gains and losses of forest cover between the 120 

epochs at fine spatial resolution and between years for moderate spatial resolution. Also, we 121 

restricted our definition of FCC exclusively to changes in forest cover and not to any change 122 

in the type of forest land use (cf. FRA 2000). Even within forest cover per se, there are many 123 

other types of changes—e.g., selective logging—that are also important for many science 124 

and land-management applications (e.g. Muchoney & Haack 1994, Olsson 1994; Asner et al. 125 

2005), but a global analysis of these is not yet feasible. 126 

Like any ESDR, the data produced contain uncertainty, but this 15-year record represents a 127 

major advance in our understanding of Earth’s changing forest cover. In processing the fine- 128 

and moderate-resolution data sets, we ensured that the data provide coverage of the 129 

greatest extent possible and are internally consistent and that errors and uncertainty are 130 

thoroughly characterized.  131 
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1.4 Significance 132 

These Earth Science Data records provide the first and only consistent, global record of 133 

forest cover changes documenting the period from 1990 to 2005, and they enable the first 134 

comprehensive assessment of Earth’s forest cover at a scale appropriate to recent changes. 135 

The data also provide the basis for understanding impacts of forest change on the Earth 136 

system, including carbon budgets and the hydrological cycle. The fine-resolution and global 137 

extent of the fragmentation products support habitat analyses and other ecological studies 138 

at scales ranging from local to global, which is particularly valuable to natural resource 139 

managers, especially those responsible for conserving biodiversity (Dudley et al. 2005; Hilli & 140 

Kuitunen 2005). The protected-area subsets of the forest change and fragmentation records 141 

allow assessment of local conservation effects as well as the broader effectiveness of 142 

international environmental and biodiversity agreements. The moderate-resolution products 143 

are of particular value to various modeling communities, especially those concerned with 144 

regional to global carbon modeling (Ojima & Galvin 1994, DeFries et al. 1999) and regional 145 

hydrological modeling (Band 1993, Sahin & Hall 1996, Bounoua et al., 2002). Completion of 146 

this project satisfies key components of the GOFC-GOLD requirements for fine-resolution 147 

products (Skole et al. 1997, Townshend et al. 2004) and forms a contributory activity to 148 

GOFC-GOLD through its Land Cover Implementation Team. 149 

2 Primary data inputs 150 

2.1 Landsat images 151 

2.1.1 Enhanced Global Land Survey 152 

The primary data sources for generating the fine-resolution ESDRs were the GLS Landsat 153 

image datasets centered around 1990, 2000, and 2005. The GLS is a partnership between 154 

USGS and NASA, in support of the U.S. Climate Change Science Program and the NASA Land-155 

Cover and Land-use Change (LCLUC) Program. Building on the existing GeoCover dataset 156 

developed for the 1970s, 1990, and 2000 (Tucker et al. 2004), the GLS was selected to 157 

provide wall-to-wall, orthorectified, cloud free Landsat coverage of Earth's land area at 30-158 

meter resolution in nominal “epochs” of 1990, 2000, and 2005 (Franks et al. 2009, Gutman 159 

et al. 2008). The GLS was intended to provide one clear-view image acquired during the peak 160 

growing season of each epoch for each World Reference System (WRS) scene. The 1990 161 

epoch ranges from 1984 to 1997 and is composed of 7,375 Landsat-5 Thematic Mapper (TM) 162 

images from 1984 to 1997. The GLS 2000 is composed of 8,756 Landsat-7 Enhanced 163 

Thematic Mapper Plus (ETM+) images from 1999 to 2002. The GLS 2005 is composed of 164 

7,284 gap-filled Landsat-7 images and 2,424 Landsat-5 TM images acquired between 2003 165 

and 2008. In many cases, however, images had to be selected with a date outside this range, 166 

mostly due to lack of cloud-free images during the growing season (Franks et al. 2009, 167 

Gutman et al. 2008, Channan et al. 2015). Because images have been selected from 168 

somewhat different dates, there are variations in phenology which account for the 169 

patchiness of image mosaics in some locations (Kim et al. 2011; Townshend et al. 2012).  170 
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The original GLS data set did not fully cover Earth’s terrestrial surface in all epochs; gaps 171 

were filled to the degree possible with newly available images (Figure 1). A major hole over 172 

northern South America in 1975 was filled using Landsat images from the Brazilian National 173 

Institute for Space Research (INPE) orthorectified using our own modules. However, no data 174 

exist to fill an expansive coverage gap over central and eastern Siberia in the 1990 epoch. 175 

Smaller, isolated holes also persist where coverage is missing in one or several adjacent WRS 176 

tiles for individual epochs; we obtained the best available Landsat images to fill these gaps. 177 

Finally, GLS images acquired near or during the leaf-off season, which are not suitable for 178 

forest cover change analysis, were replaced with images acquired during the local “leaf-on” 179 

growing season to use in our forest cover change analysis, pending availability (Kim et al. 180 

2011, Channan et al. 2015). 181 

2.1.2 Phenological selection 182 

A challenge in using GLS data sets for analysis is that many of the GLS images were acquired 183 

near or during leaf-off seasons. Because the spectral differences between leaf-on and leaf-184 

off deciduous forests can be great, automated FCC analysis based on leaf-off images can 185 

result in widespread, erroneous changes. Prior to classification and forest change analysis, 186 

each Landsat image was evaluated to determine its phenological suitability for forest-cover-187 

change analysis. We used the NDVI temporal profiles calculated using the GIMMS AVHRR 188 

and MODIS data record (Tucker et al., 2005) to determine whether an image was acquired 189 

near or during leaf-off seasons. The GLS 1990, 2000, and 2005 images were evaluated using 190 

the GIMMS record directly. 191 

  192 

 193 

  

  

Figure 1. GLS image holdings, including 1975 MSS amendments acquired by the GLCF from INPE. 194 
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2.1.3 Orthorectification 196 

Many non-GLS Landsat images were needed to supplement the GLS dataset to produce the 197 

fine-resolution ESDR products. Many of these non-GLS images were not orthorectified and 198 

might therefore have contained significant geolocation errors. We developed and 199 

implemented an orthorectification algorithm in the LEDAPS software that automatically 200 

orthorectifies a Landsat image to match the GLS data set (Gao et al. 2009). The module was 201 

used to orthorectify over 500 images in North America, ~30 images in Madagascar, and ~20 202 

images in Africa, as well several SLC-off ETM+ images. During extensive validation, residual 203 

misregistration errors in the orthorectified products were found to be less than 1 pixel.  204 

2.2 Digital Elevation Model: ASTER GDEM (v2.0) 205 

We used the Global Digital Elevation Model, version 2.0 (GDEM v2.0) as an ancillary layer in 206 

many analyses. Produced from images acquired by the Advanced Spaceborne Thermal 207 

Emission and Reflection Radiometer (ASTER) the GDEM dataset was jointly released by the 208 

Ministry of Economy, Trade, and Industry (METI) of Japan and NASA. The first and second 209 

versions of the ASTER GDEM were released in June 2009 and October 2011 respectively. The 210 

30-meter resolution ASTER GDEM was generated using stereo-pair images collected by the 211 

ASTER instrument onboard the Terra satellite. The dataset is distributed in GeoTIFF format, 212 

spanning from 83S to 83N. 213 

2.3 MODIS VCF Tree Cover Layer 214 

The MODerate-resolution Imaging Spectroradiometer (MODIS) Vegetation Continuous Fields 215 

(VCF) Tree Cover dataset, Version 5, was produced at 250-m resolution globally from 2000 to 216 

2010 (DiMiceli et al 2011).  In contrast to methods based on linear mixture models (e.g., 217 

DeFries et al. 1999, Asner et al. 2005), the MODIS VCF is based on a flexible regression tree 218 

algorithm, which is more capable of incorporating empirical information to improve 219 

correlation of estimates to measured tree cover. Although the MODIS Tree Cover VCF has 220 

been used for a wide range of continental- to global-scale assessments, many land cover 221 

changes occur in patches beneath its 250-m resolution (Townshend and Justice 1988).  222 

Higher-resolution continuous-field datasets had been generated for limited areas based on 223 

Landsat data (e.g., Homer et al. 2004), but there were currently no global datasets 224 

representing tree cover at resolutions finer than that of the MODIS sensor. 225 

The spatial and thematic scale of the MODIS VCF and other continuous-field datasets (e.g., 226 

Asner et al. 2005 have made reference data difficult to acquire, and so quantitative error 227 

estimates of these datasets are quite limited.  Hansen et al. (2002) provided the first de 228 

facto—although not independent—estimates of MODIS VCF accuracy by comparing an 229 

experimental version of the dataset to the Landsat data used to train the generating model.  230 

Later, White et al. (2005) compared the MODIS VCF Version 1 to independently gathered 231 

field data across the arid southwestern US, and Montesano et al. (2009) validated the 232 

Version-4 MODIS VCF against independent reference data derived from photo-interpreted 233 

high-resolution images across the boreal-taiga ecotone.  Also, Heiskanen et al. (2008) and 234 

Song et al. (2011) compared the MODIS VCF to other remotely sensed global datasets.  235 



8 
Global Land Cover Facility 
www.landcover.org 
 

Across all biomes and types of reference data, these independent assessments found that 236 

saturation of the optical signal, phenological noise, and confusion with dense herbaceous 237 

vegetation led to errors in the MODIS VCF between 10-31% Root-Mean-Squared Error 238 

(RMSE), over-estimation in areas of low cover, and under-estimation in areas of high cover. 239 

3 Primary data products 240 

3.1 High- (30-m) resolution Earth Science Data Records 241 

3.1.1 Surface Reflectance 242 

3.1.1.1 Introduction 243 

Reflectance is defined as the fraction of incident radiance within a specified interval, or 244 

band, of the electromagnetic spectrum that is reflected (i.e., neither absorbed nor  from a 245 

target. Directional surface reflectance is further specified as the ratio of the radiance 246 

reflected from a surface to the incident radiance incoming from a direct source of 247 

illumination in a given infinitesimal solid angle. Estimated by atmospheric correction of 248 

satellite images, directional reflectance ideally decouples the surface properties from the 249 

atmospheric signal, thus representing the value that would be measured by an ideal sensor 250 

held just above the Earth’s surface at a given solar and viewing geometry and without any 251 

atmospheric effects. 252 

Directional surface reflectance is the most basic remotely sensed surface parameter in the 253 

solar- reflective wavelengths and therefore provides the primary input for essentially all 254 

higher-level surface geophysical parameters, including vegetation indices, albedo, Leaf Area 255 

Index (LAI), Fraction of absorbed Photosynthetically Active Radiation (FPAR), burned area, 256 

land cover and land cover change. Directional surface reflectance is also directly used in 257 

various applications to visually or quantitatively detect and monitor changes on the Earth’s 258 

surface. Because they enable other comparisons among data imaged under various 259 

illumination and atmospheric conditions, reflectance data products have value 260 

independently of their utility for monitoring forest cover change. For example, the ESDR 261 

Community White Paper on Surface Reflectance (Vermote et al., 2006) notes that validation 262 

of global reflectance data sets from AVHRR, MODIS, and VIIRS will need to rely on 263 

reflectance products derived from high-resolution sensors. 264 

Nearly half of the original GLS-1990 dataset did not have correct radiometric gain and bias 265 

coefficients at the time of data acquisition; thus atmospheric correction and conversion to 266 

surface reflectance were not possible (Chander et al. 2003, 2009; Townshend et al. 2012). 267 

These un-calibrated GLS images were replaced after the original GLS compilation with 268 

substitutes from the updated USGS archive within the epoch wherever possible (Figure 1). 269 

To perform the selection of replacement imagery while minimizing phenological or 270 

atmospheric noise, a tool was constructed to query the USGS Global Visualization Viewer 271 

(GloVis) database (glovis.usgs.gov/) for appropriate images based on phenological time 272 

series of Normalized Difference Vegetation Index (NDVI) from the MODerate-resolution 273 

Spectroradiometer (MODIS) (Kim et al. 2011; Townshend et al. 2012).  274 
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Each image of this enhanced GLS dataset was then atmospherically corrected to surface 275 

reflectance using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) 276 

(Masek et al. 2006b). Atmospheric inputs and parameterization of LEDAPS are described by 277 

Feng et al. (2013). The surface reflectance data set from the enhanced version of GLS-1990 is 278 

available from the Global Land Cover Facility (www.landcover.org) and use of these data is 279 

strongly recommended for studies based on the GLS-1990 data. Clouds were identified in a 280 

spectral-temperature space (Huang et al. 2010) and removed from subsequent analysis. This 281 

“aggressive” cloud-detection algorithm’s low rate of omission error makes it suitable for 282 

masking pixels from forest-cover change analysis. Cloud shadows were identified by 283 

projecting cloud masks onto a digital elevation model through solar geometry at the time of 284 

image acquisition (Huang et al. 2010) and were also removed from analysis. 285 

3.1.1.2 Algorithm 286 

3.1.1.2.1 Radiometric calibration and estimation of top-of-atmosphere reflectance 287 

The Landsat-7 ETM+ instrument has been carefully calibrated and monitored since launch in 288 

1999, and the calibration has been stable since shortly after launch (Markham et al. 2003). 289 

The Landsat-5 calibration history has recently been updated (Chander & Markham 2003, 290 

Chander et al. 2009) and is compatible with subsequent Landsat-7 ETM+ data. LEDAPS uses 291 

updated calibration histories to convert 8-bit quantized Landsat data to at-sensor radiance 292 

and then to top-of-atmosphere (TOA) reflectance using solar geometry and instrument band 293 

pass. 294 

3.1.1.2.2 Atmospheric correction to estimate surface reflectance 295 

Atmospheric correction seeks to estimate surface reflectance by compensating for the 296 

scattering and absorption of radiance by atmospheric constituents. In practice, atmospheric 297 

correction is typically achieved by inverting a highly parameterized model of atmospheric 298 

radiative transfer coupled to a surface reflectance model. For speed and simplicity, the 299 

reflecting surface is often assumed to be Lambertian. Atmospheric radiative transfer 300 

modeling is relatively mature, and so several methods may be used to model the 301 

surface/atmosphere interaction (e.g., Successive Order of Scattering, Doubling adding). The 302 

main challenge to the operational implementation of these models lies in the assignment of 303 

the atmospheric parameters and the a priori knowledge of the surface BRDF – strictly 304 

necessary for a full inversion. Approaches to operationally retrieving the atmospheric 305 

parameters have advanced considerably in the last 10 years as remote sensing instruments 306 

capable of retrieving atmospheric properties (aerosol, ozone, water vapor, etc..) have been 307 

put into operation. In the absence of operational retrievals, atmospheric climatology or 308 

forecasted values can be applied, although product accuracy degrades considerably without 309 

coincident atmospheric measurements. The determination of surface BRDF is currently 310 

practical operationally only for satellite sensors with single-pass multi-angular capability, 311 

such as MISR or POLDER. Thus, the uncertainty introduced by surface BRDF was assumed to 312 

be constant inter-annually and to not have significant influence on analyses at this temporal 313 

scale. 314 

http://www.landcover.org/
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The atmospheric perturbation of the directional surface reflectance signal depends on the 315 

type and characteristics of atmospheric particles interacting with the radiation. Atmospheric 316 

gas molecules (N2, O2, O3, H2O, CO2, etc.) scatter radiation according to Rayleigh’s theory 317 

(i.e., molecular scattering) and absorb radiation over the spectrum varying by species. These 318 

specific scattering effects are governed by atmospheric pressure and the vertical 319 

temperature profile. Aerosols (i.e., suspended particles ranging from about 10-3μm to about 320 

20μm) scatter and absorb radiation according to the Mie and Geometric Optics theories; the 321 

former applies to aerosols with diameters on the order of the radiation’s wavelength, and 322 

the latter idealizes particles larger than the wavelength of radiation as individual spheres 323 

with given real and imaginary refractive indices. 324 

Atmospheric correction removes or reduces the effects of these atmospheric perturbations. 325 

In an idealized case of a Lambertian surface (i.e., with angularly uniform reflectance) and in a 326 

narrow spectral band (here referred to with the index i) outside of the main absorption 327 

feature of water vapor, the top-of-atmosphere signal can be written as (Vermote et al. 328 

1997): 329 

 330 

      






















),(

),(1
),,,(

),,,,,(

),(),(),,,,,,,,(

22

2

33320

OH

O

i

U

i

OH

s

ii

atm

si

vs

i

atm

OH

i

vs

i

atm

U

i

O

i

OGOOH

Aer

i

A

ii

Avs

i

TOA
UmTg

AerAS
AerATr

UAerA

UmTgAmTgUUPA









 ,     (1) 331 

 332 

where: 333 

 ρTOA is the reflectance at the top of the atmosphere; 334 
 Tg is the gaseous transmission by a gas species (g), e.g., water vapor (TgH2O), ozone 335 

(TgO3), or other gases, TgOG (e.g. CO2…); 336 

 ρatm is the atmosphere’s intrinsic reflectance; 337 
 Tratm is the total atmospheric transmission (downward and upward); 338 
 Satm is the atmosphere’s spherical albedo; 339 

A is the atmospheric pressure, which influences the number of molecules and the 340 
concentration of absorbing gases in the radiation’s path; 341 

 τA, ω0 and PA describe the aerosol properties and are spectrally dependent:  342 
  τa is the aerosol optical thickness; 343 
  ω0 is the aerosol single scattering albedo; 344 
  PA is the aerosol phase function; 345 
 UH2O is the integrated water vapor content; 346 

 UO3 is the integrated ozone content; 347 

 m is the air-mass, computed as 1/cos(θs)+1/cos(θv); and 348 
 ρS is the surface reflectance to be retrieved. 349 
 350 

The geometrical conditions are described by the solar zenith angle (θs), the viewing zenith 351 

angle (θv), and by Φ, the difference between θs and θv. The effect of water vapor on the 352 

intrinsic atmospheric reflectance is approximated as: 353 
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 356 

where ρR represents the reflectance of the atmosphere due to Rayleigh scattering and ρR+Aer 357 

represents the reflectance of the mixing molecules and aerosols. Accounting correctly for 358 

mixing and coupling effects is important for achieving high accuracy in modeling the 359 

atmospheric effect. Eqn. (2) conserves the correct computation of the coupling and assumes 360 

that the water vapor is mixed with aerosol and that the molecular scattering is not affected 361 

by water vapor absorption. 362 

The transmission, intrinsic reflectance, and spherical albedo terms are computed using the 363 

vector version of the 6S radiative transfer code (Kotchenova et al. 2006). Since the cost of 364 

running 6S for each pixel would be prohibitive, 6S was run early in the process to generate a 365 

look up table (LUT) accounting for pressure, water vapor, ozone, and geometrical conditions 366 

over the whole scene for a range of aerosol optical thicknesses. The LUT was created for 367 

each TM band and was used both in the aerosol retrieval process as well as in the correction 368 

step at the end.  369 

Ozone concentrations were derived from Total Ozone Mapping Spectrometer (TOMS) data 370 

aboard the Nimbus-7, Meteor-3, and Earth Probe platforms. The gridded TOMS ozone 371 

products are available since 1978 at a resolution of 1.25º longitude and 1.00º latitude from 372 

the NASA GSFC Data Active Archive Center (DAAC). In cases where TOMS data were not 373 

available (e.g., 1994–1996), NOAA’s Tiros Operational Vertical Sounder (TOVS) ozone data 374 

were used. Column water vapor was taken from NOAA National Centers for Environmental 375 

Prediction (NCEP) reanalysis data available at a resolution of 2.5 by 2.5 degrees 376 

(http://dss.ucar.edu/datasets/ds090.0/) over the Landsat era. Digital topography (1 km 377 

GTopo30) and NCEP sea-level surface pressure data were used to adjust Rayleigh scattering 378 

to local conditions.  379 

Like other atmospheric correction schemes for MODIS and Landsat, the Dark, Dense 380 

Vegetation (DDV) method (Kaufman et al. 1997; Remer et al. 2005) was used to infer aerosol 381 

optical thickness (AOT) from each image. Based on the correlation between chlorophyll 382 

absorption and bound water absorption, this method postulates a linear relation between 383 

surface reflectance in the atmospherically insensitive shortwave-infrared (2.2 μm) and 384 

surface reflectance in the affected visible bands. The method then uses this relation to 385 

calculate surface reflectance for the visible bands and estimate aerosol optical thickness by 386 

comparing the result to the TOA reflectance. For LEDAPS AOT estimation, each image was 387 

averaged to 1-km resolution to suppress local heterogeneity, and candidate “dark targets” of 388 

TOA reflectance were selected. For these targets, correlation was assumed only between the 389 

blue (0.45–0.52) and SWIR (2.2μm) bands, such that water targets were excluded. The 390 

http://dss.ucar.edu/datasets/ds090.0/
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specific relation was derived from an analysis of data from Aerosol Robotic Network 391 

(AERONET) sites where AOT is measured directly. The calculated AOT in the blue 392 

wavelengths was propagated across the spectrum using a continental aerosol model. A 393 

“sanity check” for the aerosol was performed by analyzing the surface reflectance derived in 394 

the red band for each 30-m pixel contained in the 1-km grid cell; if too many “unphysical” 395 

values were found, the aerosol retrieval at this 1-km location was rejected. The valid aerosol 396 

optical thicknesses at 1 km were interpolated spatially between the dark targets using a 397 

spline algorithm. The interpolated AOT, ozone, atmospheric pressure, and water vapor were 398 

supplied to the 6S radiative transfer algorithm, which then inverts TOA reflectance for 399 

surface reflectance for each 30-m pixel. 400 

As noted above, water targets were excluded from the aerosol retrieval. However, 401 

interpolation of valid (i.e., land) aerosol targets occurs across the entire scene. Thus, the 402 

surface reflectance of small lakes surrounded by land was likely to be reasonable, while the 403 

reflectance of open ocean water (far from any valid aerosol target) was likely to be 404 

problematic. 405 

3.1.1.2.3 Cloud- and shadow- masking 406 

Removing pixels contaminated by clouds and their shadows was necessary to avoid 407 

erroneous retrieval of surface reflectance and false detection of forest-cover change. 408 

LEDAPS implemented two cloud masks – a version of the Landsat Automated Cloud Cover 409 

Assessment (ACCA) algorithm (Irish, 2000) and a more aggressive mask based on MODIS 410 

spectral tests (Ackerman et al. 1998). Shadows were located from the latter using solar 411 

geometry and an estimate of cloud height based on the temperature difference between 412 

known cloudy pixels and NCEP surface temperature. A third cloud-masking algorithm has 413 

been developed by Dr. Vermote through his USGS-funded Landsat Science Team project – “A 414 

Surface Reflectance Standard Product for LDCM and Supporting Activities”. Quality 415 

Assessment codes for this algorithm are listed in Table 1. Finally, an automated cloud and 416 

shadow masking algorithm has also been developed by Huang et al. (2010) as part of the 417 

TDA-SVM algorithm. 418 

3.1.1.3 Validation 419 

Landsat surface reflectance products were validated in two ways. Internal aerosol optical 420 

thickness (AOT) estimates retrieved by LEDAPS have been compared to measurements taken 421 

at Aerosol Robotic Network (AERONET) observations (Masek et al. 2006b), and surface 422 

reflectance was compared to simultaneously acquired MODIS daily reflectance and Nadir- 423 

and BRDF-Adjusted Reflectance (NBAR) images (MOD09 and MOD43, respectively) (Feng et 424 

al 2013). These paired validations provide an internal check on a driving parameter of the 425 

LEDAPS algorithm (AOT), as well as a consistency check against the thoroughly calibrated 426 

and validated MODIS product. 427 

 428 

Table 1. Quality flags produced by cloud masking, distributed in 16-bit Quality Assessment (QA) layer. 429 
Bit meaning 

0 Unused 
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1 Valid data (0=yes, 1=no) 

2 Cloud identified by ACCA (1=cloudy, 0 = clear) 

3 Unused 

4 ACCA snow mask 

5 DEM-based land mask (1=land, 0=water) 

6 Dense, Dark Vegetation (DDV) 

7 Unused 

8 Internal cloud mask (1=cloudy, 0=clear) 

9 Cloud shadow 

10 Snow mask 

11 Land/water mask based on spectral test 

12 Adjacent cloud 

13-15 unused 

 430 

3.1.1.3.1 Comparison of retrieved AOT to AERONET measurements 431 

Aerosol Robotic Network (AERONET) sites measure and record aerosol properties across the 432 

globe, with records at some sites extending back to the early 1990’s (Holben et al. 1998). 433 

Aerosol optical thickness estimates from pixels processed through LEDAPS were compared 434 

to coincident measurements from 21 of these AERONET sites (Table 2, Figure 2). All AOT 435 

values reported are for the blue wavelengths. Results suggest reasonable agreement with 436 

AERONET observations, and the discrepancies between LEDAPS and MODIS reflectance 437 

products were generally within the uncertainty of the MODIS products themselves—the 438 

greater of 0.5% absolute reflectance or 5% of the retrieved reflectance value. Spatial 439 

patterns for the sites suggested that land cover type may influence the aerosol retrievals 440 

(Figure 3), although this artifact was slight in comparison to the direct effect of reflectance 441 

itself and therefore appears to have little impact on the retrieved surface reflectance values.  442 

 443 

Figure 2. ETM+ AOT values regressed against simultaneous AERONET AOT values for the blue band. 444 
Solid red line is the one-to-one line, dashed lines represent MODIS AOT uncertainties of (0.05+0.2*AOT). 445 
 446 
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Table 2. AERONET and ETM+ AOT comparisons. 447 
AERONET Site TM Scene Date AOT blue Aeronet AOT blue ETM+ 

Howland p011r029 2002253 0.4 0.1767 
GSFC p015r033 2001278 0.25 0.257 
MD_Science_Center p015r033 2001278 0.29 0.414 
SERC p015r033 2001278 0.25 0.294 
BSRN_BAO_Boulder p033r032 2000261 0.05 0.024 
Sevilleta p034r036 2000130 0.12 0.135 
Bratts_Lake p035r025 2000208 0.2 0.161 
Bratts_Lake p036r025 2001217 0.08 0.026 
Maricopa p036r037 2000167 0.09 0.1889 
Tucson p036r037 2000167 0.11 0.056 
UCLA p041r036 2000122 0.2 0.275 
Shirahama p109r037 2001105 0.3 0.344 
Anmyon p116r035 2001266 0.11 0.156 
Moscow_MSU_MO p179r021 2002150 0.17 0.059 
Rome_Tor_Vergata p191r031 2001215 0.49 0.384 
Ilorin p191r054 2000037 1.05 0.921 
Ouagadougou p195r051 2001195 0.275 0.346 
Lille p199r025 2000237 0.29 0.38 
Palaiseau p199r026 2000237 0.22 0.156 
Thompson p033r021 2001260 0.06 0.033 
HJAndrews p045r029 1999275 0.08 0.033 
     

 
 
 

 
 
 
 

   

 448 

Figure 3. TOA reflectance, atmospherically corrected surface reflectance, and AOT (blue wavelengths) for 449 
the AERONET sites used in the study. 450 
 451 
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3.1.1.3.2 Operational Quality Assessment 452 

A second validation was based on MODIS surface reflectance estimates. With bands 453 

corresponding to each of Landsat 7’s solar-reflective bands (Table 3), the MODIS sensor 454 

aboard the Terra platform follows the same orbit and crosses the equator roughly 30 455 

minutes behind Landsat 7. MODIS surface reflectance data products (MOD09) have been 456 

calibrated and validated comprehensively (Vermote et al. 2002, Kotchenova et al. 2006, 457 

Vermote and Kotchenova 2008) and may be used as a reference to validate Landsat surface 458 

reflectance products (Feng et al. 2012).  459 

We developed an online tool for validating Landsat surface reflectance estimates against 460 

coincident MODIS estimates and used it to validate the 2000- and 2005-epoch SR products. 461 

Initial tests for WRS-2 scenes over eastern Africa showed strong agreement between 462 

Landsat-7 ETM+ and MODIS surface reflectance products, with the majority of R2 values 463 

above 0.9 (Figure 4). Landsat scenes with R2 values below 0.8 were inspected individually, 464 

revealing explanations for the discrepancy. Of the poor quality images, one was corrupted 465 

and others were either cloudy or dominated by ocean. 466 

 467 

 468 

Figure 4. Correspondence between nearly simultaneously acquired Landat-7 ETM+ and MODIS surface 469 
reflectance images (Feng et al., 2012).  470 
 471 

Table 3. Landsat-7 ETM+ spectral bands and their MODIS counterparts. 472 
Landsat ETM+ Band ETM+ Bandwidth (nm) MODIS Band MODIS Bandwidth (nm) 

1 450-520 3 459-479 
2 530-610 4 545-565 
3 630-690 1 620-670 
4 780-900 2 841-876 
5 1550-1750 6 1628-1652 
7 2090-2350 7 2105-2155 

 473 

Legend

R2

A (p159r051)

B (p162r069)
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3.1.2 Tree Cover (2000 and 2005) 474 

Spatio-temporal estimates of tree-canopy (or simply “tree”) cover provide a biophysically 475 

relevant, sensible, and consistent basis for monitoring forest cover and change (Sexton et al. 476 

2016). The following algorithm and its results have been peer-reviewed and are described by 477 

Sexton et al. (2013b). 478 

3.1.2.1 Algorithm 479 

3.1.2.1.1 Model 480 

Tree cover (C) was estimated as a piecewise-linear function of surface reflectance and 481 

temperature: 482 

 483 

𝐶𝑖,𝑡 = 𝑓(𝑋𝑖,𝑡) +  𝜀,    (3) 484 

 485 

where X is a vector of surface reflectance and temperature estimates, ε is error in the 486 

estimates produced by f() applied to X, subscript i denotes the pixel’s location in space, 487 

indexed by pixel, and t refers to its location in time, indexed by year.  Continuous 488 

measurements, such as percent cover and surface reflectance, are robust to changes in 489 

resolution (Gao et al. 2006, Feng et al. 2013); although the data were derived from Landsat; 490 

the model makes no specification of scale and thus may be calibrated and applied at 491 

arbitrary, even different, resolutions between those of Landsat (30 m) and MODIS (250 m).  492 

To estimate tree cover at 30-m resolution in 2000 and 2005, MODIS-based, 250-m tree cover 493 

estimates were overlaid on rescaled Landsat surface reflectance layers in each year, and a 494 

joint sample of cover and reflectance variables was drawn to generate a training dataset for 495 

each Landsat scene in each epoch (Figure 5).  (Throughout this section, we refer to the data 496 

used to estimate model parameters as “training” data, and we refer to data whose accuracy 497 

is assumed as “reference” data.)  498 

The model was thus fit locally to each scene of the Landsat tiling system of WRS-2 in each 499 

epoch.  The model was fit using the Cubist™ regression tree algorithm and applied using 500 

CubistSAM, an open-source parser for Cubist  (Quinlan 1993). Except for an allowance for 501 

extrapolation within the range [0,100], our application of regression trees was standard (i.e., 502 

neither sample boosting or bagging nor ensemble “random forests” or “committee models” 503 

were employed). Cubist – as well as regression trees in general - has been found to provide 504 

accurate estimates of percent-scale land cover attributes in numerous studies (e.g., Sexton 505 

et al. 2006, 2013a). Because regression trees can over-fit the data and there are often few 506 

data points at the extremes of the range of the response variable (e.g., tree cover), Cubist 507 

gives an option for either estimating within the range of the response variable at each node 508 

(the default) or extrapolating within a specified range. To avoid over-fitting to the 509 

sometimes small samples at terminal nodes with extreme cover values, we allowed for 510 

extrapolation within the range of 0-100% tree cover. The fitted model was then applied to 511 
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the original, 30-m Landsat data in order to estimate tree cover at the Landsat spatial 512 

resolution. 513 

 514 

 515 

Figure 5. Flowchart of tree-cover rescaling algorithm. 516 
 517 

3.1.2.1.2 Training data 518 

“Training” tree-cover data for model fitting were derived primarily from the 250-m MODIS 519 

VCF Tree Cover layer (DiMiceli et al. 2011) from 2000-2005.  Random errors (i.e., those 520 

which were not systematic, e.g., bias) were minimized by using the six-year median of cover 521 

for each pixel.  Land-cover changes between 2000 and 2005 were removed by calculating 522 
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the standard deviation of annual tree cover estimates for each pixel over that interval and 523 

removing pixels in the top 10% of the distribution of standard deviations of each Landsat 524 

scene. Because only six years of MODIS VCF data were available, we used the median, which 525 

is a better representation of central tendency than the mean in small samples such as the six 526 

values of cover from 2000-2005. 527 

Pure (i.e., 0% or 100%) and near-pure pixels are rare in the MODIS data, and tree cover 528 

tends to be over-estimated in areas of low cover, especially agricultural fields.  To ameliorate 529 

under-representation of low tree-cover in the training sample, we augmented the MODIS-530 

derived reference data with information from the Training Data Automation and Support 531 

Vector Machines (TDA-SVM) automated classification algorithm (Huang et al. 2008) and the 532 

MODIS Cropland Probability Layer (Pittman et al. 2010). Cropland Probability and Tree Cover 533 

images were overlaid within each Landsat scene, and Landsat pixels with crop probability > 534 

0.5 and tree cover < 50% were selected.  This selection comprised Landsat pixels with either 535 

crop or sparse vegetation cover.  Within the selection, Landsat pixels identified by TDA-SVM 536 

as “non-forest” in both 2000 and 2005 were assumed to be sparsely vegetated and were 537 

labeled as 0% tree cover.  The remaining (i.e., crop) pixels in the selection were ranked by 538 

their NDVI values and divided into three sub-strata: high, medium, and low NDVI.  Pixels 539 

from each of these sub-strata were randomly sampled such that the maximum proportion of 540 

Landsat “crop” pixels was the proportion of MODIS pixels within the scene whose crop 541 

probability was > 60%.  All of the sparsely vegetated pixels and the sample of crop pixels 542 

were then pooled with the MODIS-based reference data to form an ensemble training 543 

sample of tree cover and reflectance. 544 

3.1.2.2 Post-processing 545 

3.1.2.2.1 Water mask 546 

Surface-water bodies were masked from the tree and forest-cover & change data, and the 547 

surface-water layer is a useful input to many other applications. The following algorithm is 548 

described by Feng et al. (2015).  549 

Water cover was defined as a state of the landcover domain c ϵ C, and its probability of 550 

occurrence in each pixel was modeled as a function of reflectance and topographic 551 

covariates (X): 552 

P(c = ”water”|X)        (4) 553 

where f is a binary decision tree fit by the See5™ algorithm (Quinlan 1986, 1993). The 554 

topographic covariates were elevation and slope derived from the ASTER GDEM (Tachikawa 555 

2011), reflectance covariates were Landsat Band-5 (SWIR) surface reflectance, the 556 

Normalized-Difference Water index (NDWI) (McFeeters 1996): 557 

 558 

𝑁𝐷𝑊𝐼 = (𝜌𝐺 − 𝜌𝑁𝐼𝑅) (𝜌𝐺 + 𝜌𝑁𝐼𝑅)⁄ ),        (5) 559 

 560 
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and the Modified Normalized-Difference Water index (MNDWI) (Xu 2006): 561 

 562 

𝑀𝑁𝐷𝑊𝐼 = (𝜌𝐺 − 𝜌𝑆𝑊𝐼𝑅1)/(𝜌𝐺 + 𝜌𝑆𝑊𝐼𝑅1) ),       (6) 563 

 564 

to distinguish water from other cover types, as well as the Normalized Difference Vegetation 565 

Index (NDVI) (Tucker et al. 2005) 566 

 567 

𝑁𝐷𝑉𝐼 = (𝜌𝑁𝐼𝑅 − 𝜌𝑅)/(𝜌𝑁𝐼𝑅 + 𝜌𝑅)        (7) 568 

 569 

to distinguishes water from vegetation specifically. The optimal threshold of each index for 570 

separating water varies regionally and over time due to mixing and local similarities with 571 

other cover types (Ji et al. 2009; Jiang et al. 2014). 572 

Water was detected in each 30-m Landsat pixel with a classification-tree model (Quinlan 573 

1986) parameterized through an automated, two-stage procedure. An initial, deductive 574 

stage identified reference water pixels of varying certainty by comparing multi-spectral 575 

water and topographic indices to coarse-resolution (MODIS) water estimates. This stage 576 

leveraged prior knowledge with multiple sources of independent information to stratify the 577 

decision space into regions of possible water with varying degrees of certainty. An inductive 578 

stage then optimizes rules based on high-resolution estimates of surface reflectance, 579 

brightness temperature, and terrain elevation. 580 

The first stage of classification generates local reference data with varying levels of certainty. 581 

The pixels, identified as water by multi-spectral indices, were compared with a priori water 582 

pixels resampled from the 250-m resolution MODIS water mask to the spatial resolution and 583 

extent of each Landsat image. This comparison resulted in four possible levels of certainty, 584 

through which weights were assigned to each reference datum (Table 4). 585 

Topographic, spectral, and brightness temperature variables were first stratified into generic 586 

cover types: water, land, snow and ice, and cloud. A loose and a strict threshold—equaling -587 

0.1 and 0.1—were applied each to NDWI and MNDWI to distinguish water with low and high 588 

certainty. Terrain shadows were identified as pixels with hill-shade value <150 (on a scale 589 

from 0 to 255) and slope >20 degrees, as discussed in section 2.1.2. 590 

Snow and ice show high reflectance values in the visible and NIR bands and low reflectance 591 

in SWIR bands, leading to high MNDWI but low to moderate NDWI. A strict difference 592 

threshold (0.7) was used to reduce confusion of water with snow and ice, and a criterion of 593 

brightness temperature <1.5 ℃ was also included to further improve the discrimination: 594 

MNDWI >  NDWI +  0.7 and  𝜌6 < 1.5 ℃ .     (8) 595 
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Table 4. Weights applied to observations in training ensemble of Landsat-based water mask. 596 

Data Stratum 
Agreement with MODIS 

water mask 
Weight 

Landsat indices 

High certainty water 
Agree 1.0 

Disagree 0.5 

Low certainty water 
Agree 0.1 

Disagree 0.05 

Non-water  0.1 

Snow/ice  0.3 

Terrain indices Terrain shadow  0.3 

 597 

3.1.2.2.2 Mosaicking 598 

Redundancy among multiple images was leveraged to maximize certainty in each location 599 

within each epoch. This is accomplished by a “best-pixel” compositing rule, taking the tree-600 

cover estimate with the lowest estimated uncertainty from those available.  601 

For each location (x,y) in each epoch (t), there could be any number, k ϵ K= [1,2…n], of cover 602 

and uncertainty estimate-pairs (𝑐̂, 𝜀̂ )𝑥,𝑦,𝑡,𝑘. The “best-pixel” approach takes the least 603 

uncertain estimate of cover, as well as its corresponding estimate of uncertainty: 604 

 605 

(𝑐̂, 𝜀̂)′𝑥,𝑦,𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜀̂(𝑐̂, 𝜀̂)𝑥,𝑦,𝑡,𝐾.    (9) 606 

 607 

For a static, continuous variable (e.g., tree cover), 𝜀̂ is quantified as the root-mean-square 608 

error of the estimate. For a static, categorical variable (e.g., forest cover), 𝜀̂ is quantified as 609 

the complement of the probability of class membership--i.e., 1-p(𝑐̂). 610 

This selection was applied up to twice for each (x,y,t) pixel: first if there were multiple 611 

Landsat images available for a scene (“within-scene compositing”) and second if multiple 612 

WRS-2 scenes overlapped at that pixel location (“sidelap compositing”). Missing estimates in 613 

any of the contributing images (due, e.g., to clouds, cloud- or terrain-shadows, or scan-line 614 

gaps) were treated as having maximum uncertainty so that pixels were filled with clear-view 615 

estimates wherever available. 616 

3.1.2.3 Validation 617 

3.1.2.3.1 Methods 618 

The uncertainty of the tree-cover estimate in every pixel was assessed relative to the 619 

training data by ten-fold cross-validation.  Pixel-level uncertainty was quantified at each 620 

terminal node of the regression tree and assigned to pixels identified with that node.  621 

Because these pixel-level uncertainties were assessed only relative to their training data, 622 

errors between the reference data and actual cover were not included at the pixel level.  As 623 

described in a later section, training (MODIS) and output estimates were compared to 624 
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approximately coincident measurements derived from small-footprint lidar measurements 625 

in order to assess their accuracy relative to more direct measurements of actual cover. (We 626 

use the term “measurement” to refer to lidar-derived values of cover – which are calculated 627 

without statistical inference – and the more general “estimate” to refer to values derived 628 

statistically from MODIS and Landsat images.) All comparisons were made at 250-m 629 

resolution, using MODIS estimates from 2005 and Landsat estimates from the 2005 epoch. 630 

Preliminary analyses comparing Landsat estimates to lidar measurements at 30-m resolution 631 

were not appreciably different than those reported here, although there was a small 632 

reduction of correlation believed to be due to spatial misregistration of Landsat data. 633 

Uncertainty metrics were based on average differences between paired model and 634 

reference (or training) values (Willmott, 1982), quantified by Mean Bias Error (MBE), Mean 635 

Absolute Error (MAE), and Root-Mean-Squared Error (RMSE):  636 

 637 

   MBE = ∑
Mi− Ri

n
n
i=1                     (10) 638 

 639 

   𝑀𝐴𝐸 = ∑
|𝑀𝑖−𝑅𝑖|

𝑛
𝑛
𝑖=1        (11) 640 

 641 

   RMSE = √
∑ (Mi− Ri)

2n
i=1

n
                   (12) 642 

 643 

where Mi and Ri are estimated and reference tree cover values at a location i in a sample of 644 

size n. 645 

After modeling the relationship between M and R by linear regression, their (squared) 646 

difference was disaggregated into systematic error (MSES) and unsystematic error (MSEU) 647 

based on the modeled linear relationship (Willmott 1982): 648 

 649 

𝑀𝑆𝐸𝑆 = 
(𝑀𝑖 −𝑅𝑖)

2

𝑛

𝑛

𝑖=1
 
                           (13) 650 

 651 

𝑀𝑆𝐸𝑈 = 
(𝑀𝑖 − 𝑀𝑖 )

2

𝑛

𝑛

𝑖=1
 
                  (14) 652 

 653 
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where 𝑀𝑖   is the cover value predicted by the modeled relationship (Willmott 1982).  654 

Accuracy is thus quantified by the difference between the trend of model over reference 655 

cover, and precision is quantified by the variation surrounding that trend.  MSES and MSEU 656 

sum to Mean-Squared Error (MSE), and therefore: 657 

 658 

𝑅𝑀𝑆𝐸 =  𝑀𝑆𝐸𝑠 +𝑀𝑆𝐸𝑢              (15) 659 

 660 

(Willmott 1982). To maintain consistency, we report the square roots of MSES and MSEU, i.e., 661 

RMSES and RMSEU, in units of percent cover. 662 

3.1.2.3.2 Reference data 663 

For comparison to the 2005-epoch estimates, small-footprint, discrete-return lidar 664 

measurements were collected at four sites in a range of biomes (Figure 6): (1) La Selva 665 

Biological Station and its vicinity, Costa Rica (CR) in 2006; (2) the Wasatch Front in central 666 

Utah (UT), USA in 2008; (3) the Sierra National Forest in northern California (CA), USA in 667 

2008; and (4) the Chequamegon-Nicolet National Forest, Wisconsin (WI), USA in 2005.   668 

 669 

Figure 6. Distribution of lidar-based reference sites, overlaid on global biomes (Olson 2001). Only the major 670 
habitat types intersecting reference sites are shown. 671 
 672 

The Costa Rica site is dominated by tropical moist broadleaf evergreen forest surrounded by 673 

livestock pastures.  The Utah site is an ecotone of temperate evergreen needle-leaf conifer 674 

forest, deciduous broadleaved shrubland, and annual grasses.  The California site is 675 

dominated by tall, mixed-species temperate evergreen conifer forests of varying cover.  The 676 

Wisconsin site is dominated by a mixture of temperate deciduous broadleaf hardwood and 677 

coniferous needle-leaf tree species with significant coverage of herbaceous agriculture, 678 

including corn.  All lidar measurements were acquired during the growing season of each 679 

respective site, with mean point densities > 1 return/m2.  The Costa Rica dataset, collected in 680 

2006, is described by Kellner et al. (2009), and the Wisconsin dataset is described by Cook et 681 
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al. (2009).  Figure 7 shows an example of the 3-dimensional distribution of lidar 682 

measurements in the California site. All sites were assessed visually for obvious changes in 683 

cover between data acquisitions; in the WI dataset, obvious cover changes due to forest 684 

harvesting between Landsat and lidar acquisitions (totaling 21 pixels) were delineated 685 

manually and removed. 686 

 687 

  
Figure 7. Three-dimensional distribution of a 250x250-m subset of the lidar measurements from the 688 
California reference site in nadir (left) and oblique (right) perspectives. Data points, which were sampled 689 
with intensity of approximately 13 points/m2, are classified by height into tree (pink) and non-tree (yellow) 690 
classes. The red box in the upper-right corner shows the area of one 30-m Landsat pixel. 691 
 692 

Tree cover (C) was calculated from lidar returns by dividing the number of returns above a 693 

criterion height by the total number of returns within a 10-m radius: 694 

 695 

𝐶 =
𝑛ℎ

𝑛
     (16)  696 

where n is the number of returns and nh is the number of returns above the specified height 697 

(h) (Korhonen et al. 2011).  In accordance with the International Geosphere-Biosphere 698 

definition of forests, we specified the criterion nh = 5 meters.  Following calculation of tree 699 

cover at 10-m resolution, rasters were aggregated to 250-m resolution by averaging the 700 

values within the extent of each 250-m pixel. In pixels with steep underlying terrain (as 701 

might be likely especially in CA and UT), the varying ground elevation in large pixels can 702 

cause spurious detection of tree cover as lidar returns above 5-m height; first computing 703 

cover in small, 10-m pixels and then aggregating to 250-m pixels avoided this possibility. Also 704 

note that Relative Height (i.e., RH100) and other waveform-based metrics (Hyde et al. 2005, 705 

Dubayah et al. 2010) were not used; only height of the (discrete-return) lidar posts was used 706 

to calculate canopy height.   707 
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3.1.2.3.3 Results 708 

3.1.2.3.3.1 Consistency of Landsat- and MODIS-based (VCF) tree cover estimates 709 

The relationship between Landsat estimates of tree cover and the MODIS data on which 710 

they were based was very strongly linear, near parity, and consistent among biomes (Figure 711 

8,  712 

Table 5, Table 6).  Relative to the MODIS estimates, Landsat estimates exhibited MBE of -6%, 713 

MAE of 8%, and RMSE of 10% cover ( 714 

Table 5) in the biome samples of 2005 data.  The modeled linear relationship explained 88% 715 

of the variation between the two datasets, and RMSE was equally partitioned between 716 

systematic and random components, with both RMSES and RMSEU equaling approximately 717 

7% cover (Table 7).  Although significantly different from zero, the intercept of the linear 718 

relationship was relatively small (4.5%).  719 

The global Landsat-MODIS VCF comparison for 2000 and 2005 epochs corroborated the 720 

aggregated site-specific results, with little difference between epochs (Figure 9).  Paired 721 

Landsat- and MODIS-based estimates were distributed predominantly along the 1:1 line, 722 

with a slight under-estimation of Landsat- relative to MODIS-derived values of cover.  Errors 723 

were slightly greater in the 2005 than in the 2000 data (RMSE = 8.9% in 2000; RMSE = 11.9% 724 

in 2005), and the greatest differences were confined largely to the humid tropics, suggesting 725 

their origin might lie in the effects of remnant clouds in the Landsat images.  The 2000 GLS 726 

“epoch” of image collection was before the 2003 failure of the Scan-Line Corrector (SLC) of 727 

the ETM+ instrument, and so the quality of the GLS 2000 dataset likely benefitted from a 728 

greater selection of high-quality images from which to choose cloud-free data.  729 

 730 

Table 5. Across-site comparison of tree-cover estimates from MODIS, Landsat, and lidar. Values in the 731 
upper-right triangle of the matrix are Mean Bias Error (MBE). Values in the lower-left triangle are Root-732 
Mean-Square Error (RMSE), with Mean Absolute Error (MAE) in parentheses. Biases between pairs of 733 
measurements (e.g., Landsat vs. lidar) are reported as the difference of the first element of the pair along 734 
the diagonal over the second—e.g., cover(Landsat) – cover(lidar). 735 
 736 

Landsat -5.57 -10.97 
10.28 (8.42) MODIS -5.68 

17.40 (15.23) 16.83 (13.16) lidar 

 737 

 738 

 739 

 740 

Table 6. Site-specific comparisons of tree-cover estimates from MODIS, Landsat, and lidar. Values in the 741 
upper-right triangle of each sub-matrix are Mean Bias Error (MBE). Values in the lower-left triangle are 742 
Root-Mean-Square Error (RMSE), with Mean Absolute Error (MAE) in parentheses. Mean bias (MBE) 743 
between pixel-level canopy cover estimates (e.g., Landsat vs. lidar) are reported as the difference of the first 744 
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element of the pair along the diagonal over the second—e.g., the MBE(Landsat, lidar) is reported as 745 
cover(Landsat) – cover(lidar). 746 

CR Landsat -8.37 -11.71 
 11.50 (10.13) MODIS -3.34 
 17.47 (16.33) 15.43 (12.06) Lidar 

 

CA Landsat -2.16 1.31 
 7.30 (5.90) MODIS 3.48 
 8.38 (5.82) 10.55 (8.00) lidar 

 

UT Landsat -3.85 -12.29 
 5.62 (4.47) MODIS -8.44 
 17.64 (13.02) 14.63 (10.86) lidar 

 

WI Landsat 0.36 -13.247  
 9.74 (6.79) MODIS -14.95  
 19.81 (17.39) 23.15 (20.13) lidar 

 

 747 

  
Figure 8.  Scatterplots of estimated vs. reference and training tree-cover data: MODIS-based estimates vs. 748 
lidar-based measurements (top), Landsat- vs. MODIS-based estimates (middle), and Landsat-based 749 
estimates vs. lidar-based measurements (bottom). Points and (dashed) regression lines are identified with 750 
sites by color, the overall (across-site) regression is in black, and the 1:1 line is solid black. 751 
 752 

 753 
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Figure 9. Joint distribution of a global sample of Landsat- vs. MODIS-based (VCF) estimates of forest cover 754 
in 2000 (top) and 2005 (bottom). 755 
 756 

Table 7. Linear regression summaries for pixel-level canopy cover estimates in four study areas. 757 

RMSEu is mean “unsystematic”, or “residual” error between original and calibrated measurements, 758 

and RMSEs is the “systematic” error remaining between calibrated and reference measurements (see 759 

text for full explanation). Unless otherwise noted, all coefficients are significant at Pr(>|t|) < 0.01 760 

All sites 

Regression Intercept (S.E.) Slope (S.E.) R2 

RMSEs 

RMSEu 

MODIS ~ lidar 12.429 (0.549) 0.714 (0.008) 0.705 10.097 13.462 

Landsat ~ MODIS 4.530 (0.323) 0.825 (0.005) 0.882 7.063 7.473 

Landsat ~ lidar 10.016 (0.384) 0.668 (0.006) 0.811 14.637 9.406 

 761 

Costa Rica (n=2044) 

Regression Intercept (S.E.) Slope (S.E.) R2 

RMSEs 

RMSEu 

MODIS ~ lidar 29.621 (0.756) 0.561 (0.010) 0.628 11.242 10.573 

Landsat ~ MODIS 12.477 (0.572) 0.710 (0.008) 0.804 9.765 6.066 

Landsat ~ lidar 24.593 (0.380) 0.517 (0.004) 0.850 16.640 5.312 

 762 

California (n=289) 

Regression Intercept (S.E.) Slope (S.E.) R2 

RMSEs 

RMSEu 

MODIS ~ lidar 23.963 (1.835) 0.517 (0.042) 0.348 6.610 8.226 

Landsat ~ MODIS 16.031 (1.548) 0.603 (0.033) 0.539 4.583 5.687 

Landsat ~ lidar 22.248 (1.328) 0.506 (0.030) 0.494 5.893 5.955 

 763 

Utah (n=425) 

Regression Intercept (S.E.) Slope (S.E.) R2 

RMSEs 

RMSEu 

MODIS ~ lidar 6.069 (0.453) 0.365 (0.016) 0.552 13.556 5.500 

Landsat ~ MODIS -1.066 (0.372) 0.807 (0.022) 0.755 4.160 3.784 

Landsat ~ lidar 3.316 (0.453) 0.318 (0.016) 0.483 16.766 5.492 

 764 

Wisconsin (n=655) 

Regression Intercept (S.E.) Slope (S.E.) R2 

RMSEs 

RMSEu 

MODIS ~ lidar 22.759 (0.888) 0.390 (0.013) 0.561 21.456 8.708 

Landsat ~ MODIS 3.128 (1.384)* 0.941 (0.028) 0.619 0.856 9.699 

Landsat ~ lidar 17.119 (0.809) 0.508 (0.012) 0.728 18.185 7.849 

 765 

*Pr(>|t|) = 0.024 766 

 767 
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3.1.2.3.3.2 Accuracy of Landsat-based tree cover estimates relative to lidar reference 768 

data 769 

Across the four sampled biomes, the correspondence of Landsat-based estimates of tree 770 

cover to reference lidar measurements was similar to the relationship between MODIS-771 

based estimates and lidar-based measurements (Figure 10).  Across the biomes, RMSE of 772 

Landsat estimates relative to lidar-measured cover was 17%, with MAE of 15% and MBE of -773 

11% cover (Table 6).  However, the overall linear relationship between Landsat estimates 774 

and lidar measurements was stronger (R2 = 0.81) than that of MODIS estimates relative to 775 

lidar measurements (R2 = 0.71).  This strong linear trend resulted in a greater dominance of 776 

systematic (RMSEs = 15%) over unsystematic, or random noise (RMSEU =9%) in the Landsat 777 

estimates compared to MODIS, suggesting a greater potential for empirical calibration of 778 

Landsat estimates than is possible for the MODIS dataset. Although still present, saturation 779 

of Landsat estimates relative to lidar measurements was reduced slightly compared to the 780 

saturation seen in MODIS-based estimates. 781 

 782 

 783 

Figure 10. Spatial representation of tree cover by lidar measurements and Landsat and MODIS estimates in 784 
four sites. Imagery in top row was obtained from high-resolution, true color images provided by Microsoft 785 
Bing Maps. 786 
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 787 

Landsat estimates reproduced the spatial pattern of tree cover in most sites with greater 788 

fidelity than did MODIS estimates (Figure 10).  The exception to this was the UT site, where 789 

there was no clear correspondence between either Landsat or MODIS estimates and the 790 

lidar measurements.  Another artifact shared in both the Landsat and MODIS data was the 791 

slight compression of the actual frequency distribution of values, such that there were more 792 

intermediate values and correspondingly fewer values near the extremes of cover (i.e., 0 and 793 

100%).  It should be stressed, however, that even considering the minor artifacts, Landsat 794 

estimates resolved greater spatial variation in tree cover than did the relatively coarse 795 

MODIS estimates.  796 

3.1.3 Forest cover and change 797 

3.1.3.1 Definitions 798 

Based on the global land cover classification system developed by the International 799 

Geosphere Biosphere Programme (IGBP) (Belward & Loveland 1996), forest is defined as a 800 

minimum area of land of 0.27 hectares with ≥30% tree cover—i.e., as land cover, as opposed 801 

to land use (Sexton et al., 2016; Townshend et al., 2012). Only net forest/non-forest type-802 

conversion changes were included in the fine-resolution FCC ESDR products. We defined 803 

“forest gain” as categorical change from non-forest to forest and “forest loss” as change 804 

from forest to non-forest. Stasis of forest or non-forest classification in a pixel over a period 805 

was defined respectively as “persistent forest” and “persistent non-forest”.  806 

3.1.3.2 Algorithms 807 

3.1.3.2.1 Forest cover and change from 2000-2005 808 

The following algorithm and its results have been peer-reviewed and are described by 809 

Sexton et al. (2015). 810 

3.1.3.2.1.1 Defining forest cover in terms of tree cover 811 

“Forest” is defined as a class of land cover wherein tree (-canopy) cover, c, exceeds a 812 

predefined threshold value, c*. The probability of belonging to “forest”, p(F), is therefore the 813 

probability of c exceeding the threshold c* (Figure 11)—i.e., the integral of the density 814 

function of c above c*: 815 

 816 

𝑝(𝐹) ≝ 𝑝(𝑐 > 𝑐∗) = ∫ 𝑝(𝑐)𝑑𝑐
100

𝑐∗
.      (17) 817 

 818 

Complementarily, the probability of membership in non-forest is simply 1-p(F). 819 

In any location i, tree cover ci is estimated by a model f of remotely sensed variables X 820 

(Hansen et al. 2003, Homer et al. 2004, Sexton et al. 2013b): 821 

 822 
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𝑐𝑖 = 𝑓(𝑿; 𝛽) + 𝜀𝑖,        (18) 823 

 824 

where β is a set of empirically estimated parameters, and ε is residual error. 825 

 826 

 827 

Figure 11. Estimation uncertainty of tree and forest cover within a pixel, modeled as a normal probability 828 
density function of tree cover, with probability of forest (shaded) and non-forest (unshaded) defined relative 829 
to a threshold of tree cover, c*. 830 
 831 

Given a joint sample of locations i = [1,2,…n] with coincident true and estimated values of a 832 

continuous variable such as tree cover (ci, 𝑐̂i), error may be quantified as the Root-Mean-833 

Square Error (RMSE), which for large samples approximates the standard deviation of 834 

estimates of the true value of cover: 835 

𝜎𝜀 = √
∑ (𝑐𝑖−𝑐𝑖̂)

2
𝑖

𝑛−1
.        (19) 836 

 837 

Thus, given ci, and an estimator (e.g., linear regression) producing estimate 𝑐̂𝑖 and root-838 

mean-square error σi = σ, a Normal probability distribution of possible values of ci may be 839 

assumed (Snedecor and Cochran 1989, Hastie et al. 2001, Clark 2007): 840 

 841 

𝑝(𝑐𝑖) ≝ 𝑁(𝑐̂𝑖, 𝜎
2) =

1

𝜎√2𝜋
𝑒
−
(𝑐𝑖−𝑐̂𝑖)

2

2𝜎2 .      (20) 842 

 843 
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Given paired estimates of cover and its RMSE, this model provides a probability density 844 

function of tree cover p(c) (Eqn. 13) and therefore the probability of identifying forest for 845 

each pixel i (Eqn. 10). 846 

3.1.3.2.1.2 Change detection based on bi-temporal class probabilities 847 

Given the probability of detecting forest in a location i = (x,y) at each of two times t, four 848 

dynamic classes (D) are possible: stable forest (FF), stable non-forest (NN), forest gain (NF), 849 

and forest loss (FN). Calculating the probability of each of these dynamics at that location 850 

simply requires calculating the following joint probabilities: 851 

 852 

𝑝(𝐹𝐹)𝑖 = 𝑝(𝐹𝑖,1, 𝐹𝑖,2) = 𝑝(𝐹𝑖,1) × 𝑝(𝐹𝑖,2)     (21) 853 

𝑝(𝑁𝑁)𝑖 = 𝑝(𝑁𝑖,1, 𝑁𝑖,2) = (1 − 𝑝(𝐹𝑖,1)) × (1 − 𝑝(𝐹𝑖,2))   (22) 854 

𝑝(𝑁𝐹)𝑖 = 𝑝(𝑁𝑖,1, 𝐹𝑖,2) = (1 − 𝑝(𝐹𝑖,1)) × 𝑝(𝐹𝑖,2)    (23) 855 

𝑝(𝐹𝑁)𝑖 = 𝑝(𝐹𝑖,1, 𝑁𝑖,2) = 𝑝(𝐹𝑖,1) × (1 − 𝑝(𝐹𝑖,2))    (24) 856 

where subscripts denote observation times (Figure 12). In practice, the model of error is 857 

approximate, and so carets (^) denote that the resulting values are estimates.  These joint 858 

probabilities sum to unity at each location i, and because they are merely transformations of 859 

the original cover and error values in every pixel, they may be mapped geographically 860 

without gain or loss of information from those estimates. In order to produce a categorical 861 

map of change classes, each pixel may be assigned either the most probable class at i, or 862 

some other criterion of probability may be set (e.g., p ≥ 0.9) to filter detection based on 863 

certainty of the tree-cover and derived forest-cover and -change estimates. 864 
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 865 

Figure 12. Categorical (forest) change detection based on probabilistic fields of tree cover at two times, t1 866 
and t2. 867 
 868 

3.1.3.2.2 Forest cover and change from 1990-2000 869 

The following algorithm and its results have been peer-reviewed and are described by Kim et 870 

al. (2014). 871 

3.1.3.2.2.1 Forest-cover retrieval using stable pixels 872 

We inferred forest cover in 1990 and change from 1990 to 2000 using a signature-extension 873 

approach based on stable pixels hindcast from 2000 and 2005 epochs (Figure 13). For the 874 

purpose of large-area mapping, extrapolation of models beyond the immediate temporal 875 

and spatial domain in which they were trained has been explored by many researchers 876 

(Sexton et al. 2013b; Gray and Song 2013). Termed as “generalization” or “signature 877 

extension”, this approach has been successfully applied for the classification of forest cover 878 

(Pax-Lenney et al. 2001) and change (Woodcock et al. 2001) using Landsat data. This 879 

approach also has been implemented by deriving training data from one date and using it to 880 

train a classifier on a different image from the same path/row scene but different acquisition 881 

date (Pax-Lenney et al. 2001). Complementary to the traditional signature extension 882 

method, Gray and Song (2013) combined a procedure to identify stable pixels to deal with 883 

irregular time-series images. This approach has been found to be effective for the 884 

automated classification of large areas, especially when there are actual changes in class 885 

spectral signatures from phenological variability, atmospheric differences, or land cover 886 

changes (Fortier et al. 2011, Gray and Song 2013).  887 
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 888 

Figure 13. Hind-cast training and classification procedure to retrieve historical forest cover estimates. SR = 889 
surface reflectance, C = cover, t1 ≈ 1990, and tn≈ 2000 or 20005. 890 
 891 

3.1.3.2.2.2 Reference forest/non-forest data 892 

Persistent forest (F) and non-forest pixels (N) were sampled from forest-cover change maps 893 

between 2000 and 2005 GLS epochs and then filtered so that only “stable” pixels—i.e., those 894 

whose class did not change between 1990 and 2000 epochs—were retained for analysis. The 895 

details of the filtering process are presented below. 896 

For each WRS-2 scene, an annual rate of forest-cover (F) change, 
𝑑𝐹

𝑑𝑡
, and an annual rate of 897 

non-forest-cover (N) change, 
𝑑𝑁

𝑑𝑡
, were calculated as: 898 

 𝑑𝐹

𝑑𝑡
= 
|𝐹𝑡2 – 𝐹𝑡1|

𝑡2−𝑡1
                        (25) 899 

 
𝑑𝑁

𝑑𝑡
= 
|𝑁𝑡2 – 𝑁𝑡1|

𝑡2−𝑡1
         (26) 900 

where F and N are the percentage of forest and non-forest pixels, respectively, and t1 and t2 901 

were respectively the acquisition years of the Landsat images for 2000 and 2005 GLS epochs.  902 

The spectral difference (∆SR) - quantified as the Euclidean distance between two pixels over 903 

time in the spectral domain– was calculated for 1990-2000 (ΔSR1) and 2000-2005 (ΔSR2). To 904 

minimize impact from accelerating or decelerating rates of forest-cover change between 905 

two periods, a parameter α was defined as the ratio of the sums of spectral difference of all 906 

persistent pixels and was calculated as: 907 

α = ΣΔSR1/ ΣΔSR2,        (27) 908 

Given the large number of available pixels within the overlapping portion of two Landsat 909 

images within the same WRS-2 scene, α was doubled to increase the selectivity of filtering 910 



33 
Global Land Cover Facility 
www.landcover.org 
 

for stable pixels. A percentage of forest equaling α x 2 x 100 × 
𝑑𝐹

𝑑𝑡
 and non-forest pixels 911 

equaling α x 2 x 100 × 
𝑑𝑁

𝑑𝑡
 were thus removed per year of difference between 1990- and 912 

2000-epoch images in the order of spectral difference (∆SR). Limiting the sample to pixels 913 

that were stable from 2000 to 2005 minimized inclusion of erroneous data, and filtering the 914 

most spectrally different pixels from 1990 to the later epochs removed the pixels most likely 915 

to have changed over that period. 916 

3.1.3.2.2.3 Forest-cover classification 917 

Using the sample of stable-pixel locations, a forest/non-forest reference sample was 918 

extracted from forest-cover maps in 2000 and 2005. This sample was then filtered to 919 

maximize certainty and minimize change between observation periods (Figure 13). 920 

Forest cover in circa-1990 was retrieved by a classification-tree algorithm. The probability of 921 

forest cover, p(F), in each pixel i at time t ≈ 1990 was estimated by a conditional relationship 922 

(g) to remotely sensed covariates (𝑋): 923 

𝑝̂(𝐹)𝑖,𝑡 = 𝑔(𝑋𝑖,𝑡),        (28) 924 

where 𝑋 is a vector of surface reflectance and temperature estimates; subscripts i and t 925 

denote the pixel’s location in space, indexed by pixel, and time indexed by year. The relation 926 

g was parameterized using the C 5.0 ™ classification-tree software (Quinlan 1986), trained 927 

on a sample of pixels within each Landsat image; the model was thus fit locally within each 928 

Landsat World Reference System 2 (WRS-2) scene. Reflectance and temperature covariates 929 

were acquired from the 1990-epoch Global Land Survey collection of Landsat images 930 

(Gutman et al. 2008) and other Landsat images selected from the USGS archive, each of 931 

which was atmospherically corrected to surface reflectance and converted to radiant 932 

temperature by the LEDAPS implementation of the 6S radiative transfer algorithm (Masek et 933 

al. 2006b). Whereas retrievals from within the period of overlap between the Landsat-5, 934 

Landsat-7, and MODIS eras may be based on general—even global—models based on 935 

phenological metrics that require dense image samples within each year (e.g., Hansen et al. 936 

2013), this local fitting instead maximizes use of the single-image coverage characteristic of 937 

much of the history of Earth observation. Use of atmospherically corrected surface 938 

reflectance fulfills the conditions for signature extension in space (Woodcock et al. 2001, 939 

Pax-Lenney et al. 2001).  940 

Decision trees and other empirical classifiers are sensitive to bias in training samples relative 941 

to class proportions within their population of inference (Borak 1999, Carpenter et al. 1999, 942 

Woodcock et al. 2001, Sexton et al., 2013c) and to uncertainty in the training data set 943 

(McIver 2002, Strahler 1980). To minimize these effects, we maintained a large sample with 944 

representative class proportions by removing a small, but equal fraction of the least stable 945 

pixels from each class while maintaining the class proportions from reference epoch to 946 

training sample. Further, we weighted each pixel’s contribution to the classifier’s 947 

parameterization based on the pixel’s classification certainty in the reference data. A weight 948 

w was adopted for each pixel as the classification probability of the estimate (pmax) of forest- 949 

or non-forest cover (C) from the 2000-epoch dataset: 950 
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𝑊𝑖  = 𝑝𝑚𝑎𝑥(𝐶𝑖).         (29) 951 

The weights were then applied to adjust the objective (i.e., purity) function maximized by 952 

the iterative binary recursion algorithm employed by C5.0™ (Quinlan 1986).  953 

3.1.3.2.2.4 Forest-cover change 954 

Classification trees estimate the probability p(C) of each class in each pixel as a conditional 955 

relative frequency. Given C = “F” (i.e., “forest”), each pixel was labeled either “forest” or 956 

“non-forest” based on p(F): 957 

𝐹 ≝ 𝑝(𝐹) ≥ 0.5         (30)                        958 

𝑁 ≝ 𝑝(𝐹) < 0.5         (31)                    959 

Forest-cover change between 1990 and 2000 epochs was detected given the joint 960 

probabilities in 1990 and 2000 epochs (Sexton et al. 2015): 961 

𝑝(𝐹𝐹𝑖) = 𝑝(𝐹𝑖𝑡1) × 𝑝(𝐹𝑖𝑡2)       (32) 962 

𝑝(𝑁𝑁𝑖) = (1 − 𝑝(𝐹𝑖𝑡1)) × (1 − 𝑝(𝐹𝑖𝑡2))     (33) 963 

𝑝(𝑁𝐹𝑖) = (1 − 𝑝(𝐹𝑖𝑡1)) × 𝑝(𝐹𝑖𝑡2)      (34) 964 

𝑝(𝐹𝑁𝑖) = 𝑝(𝐹𝑖𝑡1) × (1 − 𝑝(𝐹𝑖𝑡2))                                                          (35) 965 

That is, given the probability of forest P(F) vs. non-forest P(N) in a pixel i in the 1990-epoch 966 

(t1) and 2000-epoch (t2), four classes were derived: stable forest (FF), stable non-forest (NN), 967 

forest gain (NF), and forest loss (FN). A categorical map of change classes was then produced 968 

by assigning each pixel the class with the highest probability. 969 

3.1.3.2.3 Post-processing 970 

3.1.3.2.3.1 Hedge rule 971 

In the forest cover change products, the forest dynamics (i.e., forest loss and forest gain) 972 

between two periods were determined by checking the joint probabilities of forest and 973 

nonforest estimated for each of the dates (Kim et al., 2014; Sexton et al., 2015). Dynamic 974 

classes are more difficult to detect than stable classes, and a criterion is applied to filter the 975 

detected change estimates (Kim et al., 2014; Sexton et al., 2015). As an example, Figure 14 976 

presents the accuracies for forest loss and gain between 2000 and 2005 calculated with 977 

criterions increased from 0.1 to 0.9 at 0.1 intervals. The global overall accuracy of the forest 978 

cover change data is insensitive to the changing criterions because areas of forest change 979 

are small fractions of global land area, but the criterion has a significant impact to the 980 

accuracy of the estimates of the forest dynamics. Higher criterion rules out less certain 981 

changes but also leads to high omission errors. On the contrary, lower criterion reduces 982 

omission errors, but introduces higher chance of commission errors.  983 

According to the investigation presented in Figure 14, commission and omission errors 984 

reached the closest point when the criterion is near 0.6 for both forest loss and forest gain. 985 
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The threshold 0.6 was, therefore, applied to the production of the forest cover change 986 

datasets to produce unbalanced estimations of the global forest dynamics.  987 

 988 

 989 
Figure 14 Overall and user’ and producer’s accuracies for forest loss (A) and gain (B) between 2000 and 990 
2005 estimated with criterions increased from 0.1 to 0.9 at 0.1 intervals. 991 
 992 

3.1.3.2.3.2 Minimum Mapping Unit 993 

A minimum mapping unit (MMU) was applied to comply with the forest definition and also 994 

to minimize erroneous detection of change due to spatial misregistration of Landsat images. 995 

Raster polygons smaller than the threshold MMU (0.27 hectare, or 3 pixels) were replaced 996 

by the class of the largest neighboring polygon. An eight-neighbor rule was used to delineate 997 

patches, which includes diagonally connected neighbors. 998 

3.1.3.3 Validation 999 

3.1.3.3.1 Methods 1000 

3.1.3.3.1.1 Sampling design 1001 

Accuracy assessment employed a two-stage, stratified sampling design (Cochran, 1002 

1977; Sannier et al., 2014; Särndal et al., 1992; Stehman, 1999; Stehman & Czaplewski, 1003 

1998). To increase the representation of rare classes, reference data were sampled across 1004 

the global land area in two stages, first selecting Landsat WRS-2 tiles within predefined 1005 

global strata and then sampling pixels within each selected tile. The spatial location of 1006 

sample points was held constant for all time periods. 1007 

3.1.3.3.1.1.1 Biome definition 1008 

Biome-level stratification was based on the 16 major habitat types delineated by the 1009 

Nature Conservancy (TNC) Terrestrial Ecoregions of the World dataset (TNC, 2012). 1010 

Excluding deserts and xeric shrublands, inland water, and rock & ice, we merged the major 1011 

habitat types into eight forest and non-forest biomes (Table 8). Among the 7,277 WRS-2 tiles 1012 

in the 8 biomes, the 5,294 tiles completely contained within any biome were assigned to 1013 

their respective biomes, and tiles spanning biome boundaries (including land/ocean 1014 
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boundaries) were excluded.  This reduced the land area for each of the 8 biomes available 1015 

for sampling by 18.7 - 58.2% of each biome (Table 8). 1016 

  1017 
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Table 8. Reclassification of TNC major habitat types (TNC, 2012) into biome strata. The land area for each 1018 
biome is reported in “Land area (km2)” column, and the percentage of that area reduced by excluding tiles 1019 
spanning boundaries is reported in “Spanning biome WRS-2 tiles (%)” column. The percentage of the 1020 
remained area after the “spanning biome” exclusion that further reduced by excluding edge pixels is 1021 
reported in the “Edge pixels (%)” column. 1022 

Biome 
strata 

TNC biomes 
Land area 

(km2) 

Percentage of area reduced 

Spanning biome 
WRS-2 tiles (%) 

Edge pixels (%) 

Tropical 
Evergreen 
Forests 

Tropical and Subtropical 
Moist Broadleaf Forests 

Mangroves 

Tropical and Subtropical 
Coniferous Forests 

16,608,638 25.2 9.7 

Tropical 
Deciduous 
Forests 

Tropical and Subtropical Dry 
Broadleaf Forests 

6,780,454 18.7 8.4 

Tropical 
Non-forest 

Tropical and Subtropical 
Grasslands, Savannas and 
Shrublands 

Flooded Grasslands and 
Savannas (23°S - 23°N) 
Montane Grasslands and 
Shrublands (23°S - 23°N) 

15,296,731 28.0 5.5 

Temperat
e 
Evergreen 
Forests 

Temperate Conifer Forests 3,843,538 50.9 13.2 

Temperat
e 
Deciduous 
Forests 

Temperate Broadleaf and 
Mixed Forests 

Mediterranean Forests, 
Woodlands, and Scrub 

14,013,894 29.1 9.4 

Temperat
e Non-

forest 

Temperate Grasslands, 
Savannas and Shrublands 

Flooded Grasslands and 
Savannas (23°S - 23°N) 
Montane Grasslands and 
Shrublands (23°S - 23°N) 

2,918,100 58.2 2.0 

Boreal 
Forests 

Boreal Forests/Taiga 20,381,706 24.9 12.3 

Boreal 
Non-forest 

Tundra 21,484,150 21.1 3.8 

[Excluded] 
Deserts and Xeric Shrublands 

Inland Water 
   

 1023 

3.1.3.3.1.1.2 Tile selection 1024 

Sampling within biomes focused on WRS-2 tiles exhibiting high rates of vegetation 1025 

change, detected using the Training Data Automation and Support Vector Machines (TDA-1026 

SVM) change-detection algorithm (Huang et al., 2008). The median vegetation-change rate 1027 

for each biome was then used as the threshold for discriminating high- and low-change 1028 

strata for that biome. Within each biome, eight tiles were then randomly selected in the 1029 
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high-change stratum and four tiles were randomly selected in the low-change stratum 1030 

(Figure 14).  1031 

The inclusion probability, 𝑝(𝑇|𝐺), of each WRS-2 tile, T, in each biome, G, was 1032 

calculated as: 1033 

𝑝(𝑇|𝐺) =
𝑛𝑇

𝑁𝑇
 ,          (36) 1034 

where 𝑛𝑇 is the desired number of sampled tiles within the population of the stratum (𝑁𝑇); 1035 

𝑛𝑇 was set to 4 and 8 for low- and high-change strata, respectively. A random number 𝑝1
∗ 1036 

was assigned to each tile, and tiles with 𝑝1
∗ < 𝑝(𝑇|𝐺) were selected as the sample tiles. 1037 

Globally, 89 tiles were selected out of the intended 96 because only one tile met the 1038 

criterion for the “high-change” stratum in the boreal non-forest biome.1039 

 1040 

Figure 14. Biome strata and the collected 89 WRS-2 tiles. 1041 
 1042 

3.1.3.3.1.1.3 Point selection 1043 

Following biome-level sampling, each selected tile was divided into 8 strata 1044 

representing forest/non-forest status in each of the two periods, 1990-2000 and 2000-2005. 1045 

This preliminary forest/non-forest discrimination was again performed by TDA-SVM. All 1046 

pixels identified as cloud, shadow, water, or no-data, as well as pixels located at the edge of 1047 

two classes, were excluded from the population. This exclusion reduced the available land 1048 

area for each of the 8 biomes by 3.8 - 13.2% (Table 8). 1049 

The inclusion probability for each stratum was calculated as: 1050 

𝑝(𝑖|𝑆) =
𝑛𝑆

𝑁𝑆
          (37) 1051 

where the probability 𝑝(𝑖|𝑆) is the ratio of the desired number of pixels (𝑛𝑠) to the total 1052 

number of pixels in the stratum (𝑁𝑆). As recommended by Congalton (1991) and Olofsson et 1053 

al. (2014), 𝑛𝑠 was set to 50 for each stratum (S).  A random number 𝑝2
∗ was assigned to each 1054 
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pixel, and pixels with 𝑝2
∗ <  𝑝(𝑖|𝑆) were selected as the sample points. A total of 27,988 1055 

points were thus collected across the globe. Figure 15 shows the selected points in WRS-2 1056 

tile p224r078, located at the boundary of Paraguay, Argentina, and Brazil.  1057 

  1058 

 1059 

 1060 
Figure 15. Sampling of WRS-2 tile p224r078, located at the boundary of Paraguay, Argentina, and Brazil. 1061 
The background image is a false-color (NIR-R-G) Landsat image of July 6, 2000. 1062 

3.1.3.3.1.2 Response design 1063 

Forest or non-forest cover in each pixel and each epoch was visually identified by 1064 

experienced image analysts using a web-based tool presenting the GLS Landsat image(s) 1065 

covering each location, as well as auxiliary information, including: Normalized Difference 1066 

Vegetation Index (NDVI) phenology from MODIS, high-resolution satellite imagery and maps 1067 

from Google Maps, and geotagged ground photos (Figure 16) (Feng et al., 2012b). The 1068 

Landsat images were presented in multiple 3-band combinations—e.g., near infrared (NIR)-1069 

red (R)-green (G), R-G-blue (B), and shortwave infrared (SWIR)-NIR-R. The extent of each 1070 

selected 30-m Landsat pixel was extracted in the Universal Transverse Mercator (UTM) 1071 

coordinate system and delineated in both the Landsat image and in Google Maps to 1072 

facilitate visual comparison. The NDVI profile was derived from the 8-day composited 1073 
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surface reflectance data (MOD09A1; Vermote & Kotchenova, 2008; Vermote et al., 2002) 1074 

with nearest-neighbor interpolation, excluding data labeled as cloud or shadow in the 1075 

MOD09A1 Quality Assurance (QA) layer (Feng et al., 2012b).  1076 

The selected points were randomly distributed among 12 experts for interpretation 1077 

(Table 9). Experts visually checked the information provided by the tool and labeled each 1078 

point either “forest” or “non-forest” for each of the 3 epochs individually. Points with 1079 

Landsat pixels contaminated with cloud or shadow were labeled as “cloud” and “shadow” 1080 

respectively. If an expert was unable to identify the cover of a pixel, he or she was instructed 1081 

to label it as “unknown” for further investigation.  1082 

 1083 

 1084 

Figure 16. The web-based tool for visually identifying forest cover at a selected point (Feng et al. 2012). 1085 
 1086 

  1087 

High Res from Google Maps
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Table 9. Sample sizes of human-interpreted reference data for circa 1990, -2000, and -2005 epochs. 1088 

Type 
 

Number of 
points 

 

1990 2000 2005 

Nonforest 10,657 11,244 11,929 

Forest 15,221 15,194 14,448 

Unknown 2,025 1,543 1,494 

Cloud 9 26 30 

Shadow 30 28 28 

 1089 

Over 1,000 collected points were located in each decile of tree cover, with nearly uniform 1090 

sample size across the range of tree cover > 10% cover (Figure 17). Of these points, > 90% 1091 

were labeled as forest or non-forest by visual interpretation of TM or ETM+ images in the 1092 

1990, 2000, and 2005 epochs, with only 6 % of the points remaining as “unknown”. Less 1093 

than 1 % of the points across all epochs were interpreted as “cloud” or “shadow”. The 1094 

distribution of the unknown points in the 2000 epoch revealed that these difficult points 1095 

were rare (< 4 %) in areas of low or high tree-canopy cover but were much more frequent in 1096 

areas with 5 – 35 % tree cover (Figure 18). 1097 

 1098 

 1099 
Figure 17 Distribution of interpreted points across the range of tree-canopy cover estimated by the Landsat 1100 
tree-cover (Sexton et al., 2013a). 1101 
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 1102 
Figure 18. Percentage of “unknown” points interpreted for the 2000-epoch sample across the range of tree-1103 
canopy cover estimated by the GLCF Landsat tree-cover layer(Sexton et al., 2013a). 1104 
 1105 

3.1.3.3.1.3 Validation metrics 1106 

Based on the independent reference sample, the labeled points were used to 1107 

quantify the accuracy of the global forest-cover and -change layers using validation metrics 1108 

weighted by area (Card, 1982; Congalton, 1991; Stehman & Czaplewski, 1998; Stehman, 1109 

2014). For each reference datum, i, the agreement between estimated and reference cover 1110 

or change, y, was defined: 1111 

𝑦𝑖 = {
1  if 𝑐̂𝑖 = 𝑐𝑖
0  if  𝑐̂𝑖 ≠ 𝑐𝑖

.         (38) 1112 

Weights were applied to the data to remove the effect of disproportional sampling, by 1113 

standardizing the inclusion probability of each observation proportional to the area of each 1114 

stratum (Sexton et al., 2013b). Each point’s weight, 𝑤𝑖, was calculated as the inverse of the 1115 

joint standardized probability of its selection at the tile- and pixel-sampling stages: 1116 

𝑤𝑖 =
𝑃(𝑖|𝑆)
𝑝(𝑖|𝑆)

 
𝑃(𝑇|𝐺)
𝑝(𝑇|𝐺)

= (
𝑛𝑆

𝑁𝑆
÷
𝑛𝑖

𝑁𝑖
) (
𝑛𝐺

𝑁𝐺
÷
𝑛𝑇

𝑁𝑇
) cos(𝜑𝑖),     (39) 1117 

where 𝑃(𝑖|𝑆) is the inclusion probability of the desired number of pixels (𝑛𝑠) to be randomly 1118 

selected from the number of pixels in the Landsat scene (𝑁𝑆), and 𝑃(𝑇|𝐺) is the probability 1119 

of the desired number of Landsat tiles (𝑛𝑔) selected from the total number of Landsat scenes 1120 

(𝑁𝑔) located inside the corresponding biome. Adjusting the weight by the cosine of the 1121 

pixel’s latitude (ϕ) corrects the sampling bias due to the increasing density of WRS-2 tiles 1122 

with latitude. 1123 

Overall accuracy (OA) was calculated as the weighted number of points showing 1124 

agreement between the estimated and the reference (i.e., human-interpreted) class—i.e., 1125 
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elements of the diagonal of the confusion matrix—divided by the weighed total number of 1126 

points (𝑛𝑎): 1127 

OA =
∑ yi × wi
na
i=1

∑ wi
na
i=1

⁄  .        (40) 1128 

The conditional probability of the estimate given the reference (i.e., human-interpreted) 1129 

class, P(c|ĉ) (i.e., User’s Accuracy, UA) and the conditional probability of the reference class 1130 

given the estimate P(ĉ|c) (i.e., Producer’s accuracy, PA) were calculated as: 1131 

CEc = 1-UAc = 1-
∑ yi ×wi
nĉ
i=1

∑ wi
nĉ
i=1

⁄        (41) 1132 

OEc = 1-PAc = 1-
∑ yi ×wi
nc
i=1

∑ wi
nc
i=1

⁄   ,      (42) 1133 

where n𝑐̂ were the points identified as type c (e.g., forest, non-forest, forest gain, or forest 1134 

loss) by the GLCF layers, and nc were the points identified as type c by the reference 1135 

(Stehman, 2014). The inverse of P(c|ĉ) and P(ĉ|c) were interpreted as errors of commission 1136 

and omission respectively. 1137 

3.1.3.3.1.4 Validation metrics  1138 

The variance of the accuracy metrics is described below. The points in each forest/non-1139 

forest status stratum were randomly selected. Hence, the variance of the OA for the stratum 1140 

and the UA and PA of class c (i.e., forest and non-forest for forest cover; FF, FN, NF, and NN 1141 

for forest-cover change) in the stratum were calculated following (Congalton & Green 2010, 1142 

p116-119; Olofsson et al. 2014): 1143 

𝑣(𝑂𝐴 ) =  
1

∑ 𝑛+𝑖
2𝑛

𝑖=1

∑ 𝑛+𝑖
2𝑛

𝑖=1 𝑈𝐴 𝑖
(1− 𝑈𝐴 𝑖)

𝑛𝑖+−1
       (43) 1144 

𝑣(𝑈𝐴 𝑐) =  𝑈𝐴 𝑐
(1− 𝑈𝐴 𝑐)

𝑛𝑐+−1
         (44) 1145 

𝑣(𝑃𝐴 𝑐) =  
1

∑
𝑛+𝑘
𝑛𝑘+
𝑛𝑘𝑐

𝑛
𝑘=1

[
𝑛+𝑐
2 (1−𝑃𝐴 𝑐)

2𝑈𝐴 𝑐(1−𝑈𝐴 𝑐)

𝑛𝑐+−1
+ 𝑃𝐴 𝑐

2∑
𝑛+𝑖
2 𝑛𝑖𝑐
𝑛𝑖+
(1−

𝑛𝑖𝑐
𝑛𝑖+
)

(𝑛𝑖+−1)
𝑛
𝑖≠𝑐 ],    (45) 1146 

where 𝑛𝑖𝑗 was the number of points in the error matrix at cell (i, j), and 𝑛𝑖+and 𝑛+𝑗 were 1147 

respectively the summaries of row (i) and columns (j) in the matrix. 1148 

The estimated variances (𝑣(𝜃)) for the accuracy metrics (i.e., OA, UA, and PA) of the globe 1149 

and each biome were calculated following (Cochran, 1977): 1150 

𝑣(𝜃) =  ∑ (
𝐴𝑘

∑ 𝐴𝑙
𝑛𝐺
𝑙=1

)
2

[
1

𝑛𝐺
∑ 𝑊𝑗 (𝜃𝑗 − 𝜃

̂
𝑗)
2

𝑛𝑇
𝑗=1 + ∑ 𝑊𝑖𝑗

2 𝑣(𝜃𝑖𝑗)
𝑛𝑗
𝑖=1 ]

𝑛𝐺
𝑘=1    (46) 1151 
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where a biome (G) consisted of 𝑛𝐺 biome-change strata. Each biome-change stratum (k) 1152 

covered 𝐴𝑘 area and included 𝑛𝑇 selected WRS-2 tiles. The weight for each tile (j) was 1153 

calculated as: 1154 

𝑊𝑗 =
cos(𝜑𝑗)

∑ cos(𝜑𝑖)
𝑛𝑇
𝑖=1

 ,         (47) 1155 

where 𝜑𝑖 is the central latitude of tile (j). A tile (j) consisted of 𝑛𝑗 forest status strata, and the 1156 

accuracy for the tile (𝜃𝑗) was estimated: 1157 

𝜃𝑗 = ∑ 𝑊𝑖𝑗  𝜃𝑖𝑗
𝑛𝑗
𝑖=1

,         (48) 1158 

where 𝑊𝑖𝑗  was the weight for a forest status stratum (i) within tile (j): 1159 

𝑊𝑖𝑗 =
𝑁𝑖𝑗

∑ 𝑁𝑖𝑗
𝑛𝑗
𝑖=1

,          (49) 1160 

where 𝑁𝑖𝑗  was the number of pixels in stratum (i) of tile (j). The mean (𝜃
̂
𝑗) of accuracy (𝜃𝑗) 1161 

for tile (j) was calculated: 1162 

𝜃̂𝑗 = ∑ 𝑊𝑗 𝜃𝑗 .
𝑛𝑇
𝑗=1           (50)1163 

    1164 

The standard error (SE) of each accuracy metric was calculated as the square root of its 1165 

variance: 1166 

𝑆𝐸(𝜃) =  √𝑣(𝜃).         (51)1167 

   1168 

3.1.3.3.2 Results 1169 

3.1.3.3.2.1 Accuracies of forest-cover layers 1170 

Accuracy of forest-cover detection was consistently high across all biomes and 1171 

epochs, with OA = 91% (SE≈1%) in each of the 1990, 2000, and 2005 layers (Figure 11, Table 1172 

10). Commission errors (CE = 1 - P(c|ĉ)) and omission errors (OE = 1 - P(ĉ|c)) were < 10% for 1173 

both forest and non-forest classes in all epochs, for which SE < 2.3%. The original, 1174 

unadjusted estimates showed a bias toward detection of non-forest, with the forest class 1175 

having a higher rate of omission errors (<21%) than commission errors (<3%) and the non-1176 

forest class having a higher rate of commission errors (<13%) than omission errors (<2%) in 1177 

all epochs and biomes (Table 11). 1178 

  1179 
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Table 10. Percentage accuracies of the 1990, 2000, and 2005 forest-cover layers relative to human-1180 
interpreted reference points. The standard error associated with each accuracy is reported in brackets. 1181 

Type 
1990 2000 2005 

P(c|ĉ) P(ĉ|c) P(c|ĉ) P(ĉ|c) P(c|ĉ) P(ĉ|c) 

F 
97.2 (1.99) 79.8 (1.05) 98.2 (1.24) 79.9 (1.09) 97.9 (1.15) 79.8 (1.06) 

N 
87.8 (1.93) 98.5 (1.10) 87.6 (2.28) 99.0 (1.19) 87.9 (2.20) 98.8 (1.44) 

OA 
90.9 (1.03) 91.1 (0.96) 91.2 (1.01) 

 1182 
The largest overall accuracies (OA) were found in temperate forest and non-forest, 1183 

tropical evergreen, and boreal non-forest biomes—each of which had OA > 90% (SE < 5%) 1184 

(Table 11). OA were slightly lower in boreal forests (83% < OA < 89%); OA of tropical 1185 

deciduous forest ranged from 80.7% to 84%; and OA of tropical non-forest ranged from 1186 

83.2% to 84.1%. Standard errors of OA were lowest (<1.6%) in evergreen forests and 1187 

temperate nonforest, slightly higher in deciduous and boreal forest (<2.9%), and highest in 1188 

boreal and tropical nonforest (<5%). Evergreen and boreal forests had the lowest rate of 1189 

omission error (OE < 21%; SE < 3.5%) for the forest class, followed by deciduous forests (24% 1190 

< OE < 55%; SE < 9.6%) and non-forest biomes (59% < OE; SE < 7.6%). The non-forest class 1191 

had low omission error (OE < 10%; SE < 8.5%) in all biomes, and its commission error rate 1192 

was larger in the forest biomes (≤ 32.3%; SE < 6.3%) than the non-forest biomes (≤ 18.3%; SE 1193 

< 3.3%). 1194 

These estimates of accuracy are likely conservative, given our exclusion of treeless 1195 

biomes and the uncertainty of reference data generated by identifying forest cover by visual 1196 

interpretation of satellite images (Montesano et al., 2009; Sexton et al., 2015a). Montesano 1197 

et al. (2009) found that human experts achieved 18.7% RMSE in visual estimation of tree 1198 

cover in high-resolution imagery, and Sexton et al. (2015a) found that visual confusion was 1199 

greatest near the threshold of tree cover used to define forests, especially when interpreting 1200 

change. To investigate the relation between accuracy and tree cover, OA of forest/non-1201 

forest cover in 2000 was plotted over the range of coincident tree cover estimated by the 1202 

NASA GFC tree-cover dataset (Sexton et al., 2013a). A distinct concavity was evident in the 1203 

relation, which reached its minimum near the 30% tree-cover threshold used to define 1204 

forests (Figure 19). The OA was large (> 80%) where tree cover was < 0.1 or > 0.35. 1205 

Commission and omission errors were also investigated in relation with tree cover (Figure 1206 

20). Commission error of the forest class was < 10% except among pixels with tree cover < 1207 

0.35, where the commission error was < 20%. Omission error of forest was < 20% in areas 1208 

with > 0.4 tree cover but increased in areas of sparse tree cover. 1209 

3.1.3.3.2.2 Accuracies of forest-change layers 1210 

Globally, overall accuracy (OA) of the 1990-2000 forest-change layer equaled 88.1% 1211 

(SE = 1.19%), and OA = 90.2% (SE = 1.1%) for the 2000-2005 forest-change layer (Table 12). 1212 

In each period and biome, OA ≥ 78.7% (SE < 5%) (Table 13). The global accuracies and 1213 

standard errors of stable forest (FF) and stable non-forest (NN) classes were similar 1214 

respectively to those of the stable forest and non-forest classes in the 1990, 2000, and 2005 1215 
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layers, but the change classes—i.e., forest loss (FN) and forest gain (NF)—had larger error 1216 

rates than the static classes in the respective epochs. 1217 

Commission and omission errors for forest loss were between 45% and 62% globally, 1218 

with SE between 1.72% and 23.48%. Forest-loss was detected most accurately, with errors 1219 

dominated by commission, in temperate and tropical evergreen forest biomes (PA ≥ 71.7%; 1220 

UA ≥ 49.6%). This was likely due to relatively minimal impact of vegetation phenology on 1221 

canopy reflectance in evergreen forests. Whether in temperate or tropical regions, detection 1222 

of forest loss was more accurate in evergreen forests than in their deciduous counterparts 1223 

(30% ≤ PA < 39%; 36.1% ≤ UA ≤ 50.1%). In non-forest biomes, accuracy of forest-loss 1224 

detection was very low and dominated by omissions, but the rarity of forests and their loss 1225 

in these biomes made the impact of these errors on overall accuracy small. 1226 

Forest gain was consistently the most difficult dynamic to detect, with OE and CE 1227 

each > 60% in all epochs (SE < 17%). This was likely due to the long traversal of intermediate 1228 

tree cover during canopy recovery from disturbance, compounded by the uncertainty of 1229 

human identification of change (Sexton et al. 2015a). Producer’s accuracies tended to be 1230 

largest in tropical evergreen forests (24.9% ≤ PA ≤ 75.7%), where canopy recovery following 1231 

disturbance is fastest, and smallest in non-forest biomes (PA < 19%; UA < 17%), where 1232 

recovery is slower and locations spend more time in intermediate ranges of canopy cover. 1233 

The effect of tree cover on accuracy was investigated using the 2000-2005 forest-1234 

change layer (Figure 21). Similar to that of the 2000 forest-cover layer, a distinct concavity 1235 

was evident in the relationship between overall forest-change accuracy and tree cover, and 1236 

accuracy was lowest between 0.2-0.3 tree cover. Commission and omission errors of stable 1237 

forest and non-forest in relation to tree cover were similar to those of forest and non-forest 1238 

in the static layers (Figure 22). The commission and omission errors were large in areas with 1239 

tree cover < 0.35 and decreased to < 60% in areas with tree cover > 0.35. Commission and 1240 

omission errors of forest gain were both correlated to tree cover. The omission error was < 1241 

45% and commission error was < 70% in areas with 0.3 - 0.6 tree cover but > 50% in high or 1242 

low tree cover.1243 
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Table 11 Accuracies of the global forest cover products estimated by biomes. The standard error associated with each accuracy is reported in brackets. The values are presented in 1244 
percentages. 1245 

Accuracy Type Boreal forest 
Boreal non-

forest 
Temperate 

deciduous forest 
Temperate 

evergreen forest 
Temperate non-

forest 

Tropical 
deciduous 

forest 

Tropical 
evergreen 

forest 

Tropical non-
forest 

OA 

1990 
88.2 (2.56) 98.1 (4.90) 93.0 (2.45) 93.9 (1.49) 98.4 (0.79) 80.7 (2.57) 93.7 (1.60) 83.2 (3.42) 

2000 
84.5 (2.81) 98.1 (1.95) 91.2 (2.54) 93.4 (1.41) 99.0 (0.56) 83.8 (2.46) 96.5 (1.10) 83.2 (3.43) 

2005 
83.7 (2.87) 98.2 (3.27) 90.1 (2.83) 93.0 (1.55) 99.2 (0.45) 84.0 (2.47) 96.7 (1.23) 84.1 (3.42) 

P(ĉ|c) 

F 

1990 
86.1 (1.66) 11.0 (2.35) 75.9 (9.57) 95.1 (3.31) 26.2 (5.76) 45.3 (2.68) 94.2 (2.48) 35.8 (2.09) 

2000 
80.1 (2.07) 12.1 (4.46) 72.3 (5.41) 92.0 (3.48) 38.6 (6.55) 47.5 (1.57) 96.6 (1.14) 37.2 (1.98) 

2005 
79.2 (2.54) 18.7 (7.60) 69.7 (1.97) 91.4 (3.00) 40.7 (3.33) 45.7 (1.51) 97.3 (1.63) 37.2 (1.64) 

N 

1990 
92.9 (5.14) 100.0 (1.81) 98.7 (5.52) 92.3 (8.38) 100.0 (0.67) 98.8 (3.74) 90.6 (5.96) 99.5 (3.75) 

2000 
94.4 (6.82) 100.0 (1.81) 98.8 (4.39) 95.5 (6.83) 100.0 (0.67) 99.8 (3.09) 95.8 (5.86) 99.5 (6.85) 

2005 
93.2 (7.24) 100.0 (1.92) 98.9 (3.32) 95.6 (8.41) 100.0 (0.55) 99.6 (3.67) 93.8 (6.66) 99.8 (3.78) 

P(c|ĉ) 

F 

1990 
96.4 (3.17) 94.6 (0.00) 95.4 (2.88) 94.6 (2.59) 92.9 (3.54) 95.1 (2.20) 98.1 (1.31) 96.4 (2.25) 

2000 
97.0 (3.21) 87.6 (0.07) 96.2 (2.87) 97.1 (2.58) 94.4 (7.52) 98.9 (2.16) 99.2 (1.42) 96.5 (2.28) 

2005 
96.1 (3.22) 91.6 (0.04) 96.4 (2.88) 97.0 (3.12) 95.0 (3.45) 98.1 (2.16) 98.6 (1.33) 98.5 (2.22) 

N 

1990 
75.0 (3.21) 98.1 (0.00) 92.4 (2.88) 92.9 (2.61) 98.4 (0.16) 78.0 (2.25) 74.9 (3.51) 81.8 (1.64) 

2000 
67.9 (2.90) 98.1 (0.02) 89.8 (2.86) 88.1 (2.59) 99.0 (0.17) 81.2 (2.17) 84.4 (4.74) 81.7 (1.02) 

2005 
67.7 (3.19) 98.2 (0.01) 88.4 (2.88) 87.7 (3.10) 99.2 (0.14) 81.8 (2.16) 88.3 (6.26) 82.6 (0.76) 

 1246 
 1247 
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 1248 
 1249 

 1250 

 1251 
Figure 19. Overall accuracies of forest cover in relation to circa-2000 tree cover. Tree-cover estimates were 1252 
taken from Sexton et al., (2013a).  1253 
 1254 
 1255 
 1256 
 1257 
 1258 

 1259 

Figure 20. Accuracies of forest (A) and non-forest (B) in relation to circa-2000 tree cover (Sexton et al. 1260 
2013a). 1261 
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  1264 
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P(ĉ|c)
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Table 12. Percentage accuracies of the global forest cover change layers for 1990-2000 and 2000-2005 1265 
periods. The standard error associated with each accuracy is reported in brackets. 1266 

Type 
1990-2000 2000-2005 

P(c|ĉ) P(ĉ|c) P(c|ĉ) P(ĉ|c) 

FF 
97.5 (1.98) 78.5 (1.07) 98.2 (1.17) 79.4 (1.07) 

FN 
38.1 (3.60) 45.2 (4.63) 55.0 (5.89) 52.7 (2.16) 

NF 
15.3 (4.56) 16.8 (8.84) 34.0 (5.21) 39.3 (1.44) 

NN 
88.1 (2.75) 98.8 (1.72) 87.7 (2.43) 98.9 (1.67) 

OA 
88.1 (1.19) 90.2 (1.10) 

 1267 



50 
Global Land Cover Facility 
www.landcover.org 
 

Table 13. Percentage accuracies of the global forest cover change layers, estimated by biomes. The standard error associated with each accuracy is reported in brackets. 1268 

Accuracy Type 
Boreal 
forest 

Boreal non-
forest 

Temperate 
deciduous 

forest 

Temperate 
evergreen 

forest 

Temperate 
non-forest 

Tropical 
deciduous 

forest 

Tropical 
evergreen 

forest 

Tropical 
non-forest 

OA 
1990-2000 83.0 (3.30) 98.0 (4.99) 88.0 (3.07) 90.0 (1.81) 98.3 (0.85) 78.7 (2.50) 91.7 (2.06) 80.8 (3.49) 

2000-2005 81.8 (3.04) 98.0 (3.83) 88.7 (2.99) 91.6 (1.44) 99.0 (0.58) 82.3 (2.49) 95.8 (1.92) 83.2 (3.44) 

P(ĉ|c) 

FF 
1990-2000 81.5 (1.97) 9.8 (2.81) 76.0 (9.59) 93.5 (2.38) 35.4 (5.91) 43.6 (2.73) 93.2 (1.44) 33.6 (2.58) 

2000-2005 77.7 (2.39) 12.7 (8.39) 71.9 (1.72) 91.3 (2.08) 39.8 (4.90) 45.6 (1.34) 96.8 (1.25) 36.5 (1.97) 

FN 
1990-2000 53.3 (10.12) 24.9 (14.29) 30.5 (7.10) 85.3 (11.76) 1.5 (7.35) 30.0 (14.12) 71.8 (7.01) 22.6 (3.59) 

2000-2005 34.6 (8.42) - 36.0 (15.18) 71.7 (11.53) 1.5 (7.93) 38.8 (19.04) 72.0 (11.52) 41.2 (23.48) 

NF 
1990-2000 35.9 (14.79) 5.2 (3.48) 10.6 (9.33) 29.3 (12.80) 2.2 (9.37) 12.9 (14.37) 24.9 (8.75) 4.9 (6.39) 

2000-2005 45.6 (16.60) 0.2 (0.09) 18.9 (5.39) 35.2 (7.41) 18.6 (10.94) 18.9 (14.79) 75.7 (9.10) 0.1 (11.71) 

NN 
1990-2000 93.8 (10.18) 100.0 (1.82) 98.7 (5.57) 93.4 (7.92) 99.9 (0.74) 99.5 (3.40) 94.6 (6.07) 99.4 (3.89) 

2000-2005 94.2 (8.31) 100.0 (2.24) 98.7 (3.43) 95.1 (8.38) 100.0 (0.68) 99.6 (3.11) 94.8 (7.04) 99.5 (3.83) 

P(c|ĉ) 

FF 
1990-2000 95.9 (3.19) 93.7 (0.00) 95.6 (2.88) 95.8 (2.69) 96.3 (3.41) 96.7 (2.13) 98.5 (1.47) 97.2 (2.35) 

2000-2005 96.3 (3.22) 87.0 (0.04) 96.6 (2.89) 97.1 (2.63) 94.4 (3.76) 99.1 (2.19) 99.0 (1.49) 98.5 (2.22) 

FN 
1990-2000 25.1 (3.22) 59.4 (1.72) 36.1 (3.37) 49.6 (2.84) 14.3 (2.68) 45.6 (2.44) 50.4 (17.86) 25.0 (9.31) 

2000-2005 23.6 (3.85) 49.5 (10.59) 40.0 (5.72) 63.1 (14.64) 3.7 (12.93) 50.1 (2.16) 76.9 (4.02) 52.6 (3.56) 

NF 
1990-2000 33.1 (6.36) 99.6 (15.43) 18.7 (3.78) 47.9 (2.87) 1.6 (3.99) 13.8 (2.95) 11.1 (4.05) 5.0 (1.70) 

2000-2005 15.6 (3.61) 0.5 (0.02) 37.2 (2.95) 32.8 (2.86) 16.7 (4.86) 27.4 (2.79) 49.2 (4.38) 18.7 (2.38) 

NN 
1990-2000 74.8 (6.65) 98.2 (0.02) 89.4 (2.87) 89.1 (2.60) 98.4 (0.21) 78.3 (3.06) 86.7 (3.92) 81.5 (1.90) 

2000-2005 68.8 (4.00) 98.2 (0.02) 88.1 (2.87) 87.6 (2.67) 99.1 (0.16) 80.7 (2.23) 86.8 (7.19) 82.1 (1.03) 

 1269 
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Figure 21. Overall accuracy of forest cover change (2000-2005) in relation to circa-2000 tree cover (Sexton et al. 2013a). 
 

 
Figure 22. Accuracy of the forest cover change (2000-2005) layer in relation to circa-2000 tree cover (Sexton et al. 2013a). 
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P(ĉ|c)

Legend

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8



52 
 

3.1.4 Fragmentation 

3.1.4.1 Algorithms 

3.1.4.1.1 Forest Edge 

Forest edge was mapped as the Euclidean distance from each forest pixel to its nearest non-forest pixel 

at 90-m resolution. For each 90-m “forest” pixel 𝑓, the Euclidean distance was calculated to the nearest 

“non-forest” pixel 𝑓′: 

𝐸𝑓 = √(𝑥𝑓 − 𝑥𝑓′)
2
+ (𝑦𝑓_𝑦𝑓′)

2
,         (52) 

where x  and y are meters of longitude and latitude in Lambert Azimuth Equal Area projection, 

respectively.  The calculation was not performed in non-forest pixels, and so the resulting map 

represents only forest-edge effects. Non-forest pixels were coded with null values. Because this process 

takes an (area-weighted) average of all forest pixels within the extent of each 1-km pixel, even 1-km 

pixels with only one 90-m forest pixel show a distance value. Pixels—especially those with small edge-

distances—should not be interpreted as fully forested. Histograms were tallied from these data for each 

continent and summed globally before coarsening to 1-km resolution via bilinear interpolation.  

3.1.4.1.2 Forest-patch area 

Forest patches were defined by applying an 8-neighbor rule and a 1-ha minimum mapping unit to the 

binary forest/nonforest map at 90-m resolution. Each forest patch was then labeled with a unique value, 

i, and area calculated as the sum of all (forest) pixel’s area within i: 

𝐴𝑖 = ∑ 𝑑𝑥𝑓𝑓 × 𝑑𝑦𝑓; 𝑓 ∈ 𝑖          (53) 

where dx = dy = 90 m. 

To enable computation, the calculation was performed for each continent individually and the results 

merged; buffers were used to avoid truncation of patch size near continental borders.  

3.1.4.1.3 Forest-patch isolation 

Isolation of forest patches was calculated as the least edge-to-edge distance from each forest patch to 

the nearest forest patch: 

𝐼𝑖 = 𝑚𝑖𝑛( (𝑥𝑖 − 𝑥𝑖′)
2 + (𝑦𝑖 − 𝑦𝑖′)

2); 𝑖 ≠ 𝑖′.       (54) 

Ii was calculated based on the (x,y) location of pixel centers, and so the metric has a minimum value of 

180 m. To enable computation, Eqn (54) was calculated for a random 20% of patches i, but against all 

patches i'.  Quantitative analyses were performed using these data before coarsening to 5-km 

resolution.  
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3.2 Data-product access and computation 
All of the NASA GFC datasets have been made available via the Global Land Cover Facility 

(www.landcover.org), via the GLCF Earth Science Data Interface (ESDI) and File Transmission Protocol 

(FTP).  Developed with support from the NASA REaSON program, ESDI is a web-based tool for users to 

search and download data from GLCF’s archive using spatial and non-spatial queries.  FTP is used by 

those who are more familiar with the structure of the GLCF archive, those who want to automate data 

downloading using scripts, and for those who use GLCF as a read-only “cloud” storage solution.   

 

Figure 23. A user has selected Landsat ETM+ and SRTM dataset for the state of Maryland.  The area highlighted in 

darker red is the Landsat based WRS-2 tiles that intersect the Maryland state boundary. 

 

ESDI’s mapping interface uses Java Server Pages (JSP) coupled with MapServer. JSP handles the user 

clicks for selecting data and selecting the type of query and passes the attributes to MapServer for 

displaying the data coverage on the map (Figure 23).  This is helpful for users to know if their area of 

interest has data coverage. 
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3.2.1 Landsat Global Land Survey 

Although the entire Landsat archive is now available through the USGS EROS Data Center, a large 

portion of users prefer optimized data collections such as the Global Land Survey (GLS). The GLS is the 

result of a partnership between the USGS and NASA in support of the U.S. Climate Change Science 

Program (CCSP) and the NASA Land-cover and Land-use Change (LCLUC) Program. Building on the 

existing GeoCover dataset (Tucker, et al, 2004) developed for the 1970's, 1990, and 2000, the GLS was 

selected to provide wall-to-wall, orthorectified, cloud-free Landsat coverage of Earth’s land area at 30-

meter resolution in nominal “epochs” of 1975, 1990, 2000, 2005 and 2010.  

 

Figure 24. Over half a petabyte (~534 terabytes) of GLS data distributed. 

 

The GLCF currently houses and distributes the GLS Landsat dataset for 1975, 1990, 2000, 2005 and 2010 

epochs.  Depending on the epoch, approximately 7–10,000 Landsat scenes have been compiled to cover 

the global land area (Gutman et al. 2013; Feng et al. 2013).  Over 534 terabytes of the GLS collection 

have been distributed during the NASA MEaSUREs project.  This number does not include the additional 

Landsat data (Channan et. al, 2015) that was downloaded to improve the characterization of tree cover. 

3.2.2 Surface Reflectance 

The GLCF built the LEDAPS modules on their cluster and started processing the GLS2000 collection in 

2009.  In processing the GLS collection we identified issues in the data and notified USGS.  Upon 

correction of the data, we downloaded the data, and reprocessed it to SR.  On our cluster we were able 

to process the GLS2000 data in about two weeks.  As we added more nodes to the cluster we could 

ultimately process it in about 4 days.  In June of 2011, we launched the first global Landsat based SR 

product upon the submission of the peer reviewed paper (Feng et. al, 2012) to Remote Sensing of 

Environment, which was accepted in 2012. 
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Figure 25. The Landsat-based, Global Land Survey surface reflectance mosaic. Data are available at www.landcover.org. 

 

The product was a success and significantly added to the total volume of data distributed via the GLCF.  

Roughly 15 terabytes of the GLS-2000 SR dataset were distributed during the first month that the 

product was available.  The subsequent spikes in data distribution were due to either new versions or 

additional epochs of data being added to the online archive.  The large spike in June 2015 likely was due 

to USGS LPDAAC copying the entire GLCF entire SR archive as part of the MEaSUREs data-archiving 

process.  A total of roughly 192 terabytes of data have been distributed to date. 

 

Figure 26. Volume of the GLS Landsat-based based surface reflectance data product distributed via the GLCF 

(www.landcover.org). 
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3.2.2.1 Data Formats and Values 

The SR data product was distributed in GeoTIFF file format.  Each bands with in a folder were 

individually compressed and separately made available via FTP. 

Science Data Sets Units Bit Type Fill Valid Range 
Scale factor 

(multiply) 

Band1 Surface Reflectance Reflectance 
16-bit signed 
integer 

-9999 -2000,16000 0.0001 

Band2 Surface Reflectance Reflectance 
16-bit signed 
integer 

-9999 -2000,16000 0.0001 

Band3 Surface Reflectance Reflectance 
16-bit signed 
integer 

-9999 -2000,16000 0.0001 

Band4 Surface Reflectance Reflectance 
16-bit signed 
integer 

-9999 -2000,16000 0.0001 

Band5 Surface Reflectance Reflectance 
16-bit signed 
integer 

-9999 -2000,16000 0.0001 

Band7 Surface Reflectance Reflectance 
16-bit signed 
integer 

-9999 -2000,16000 0.0001 

Band6 TOA Temperature Celsius 
16-bit signed 
integer 

-9999 -7000, 7000 0.01 

Atmospheric Opacity of 
band1 

 
16-bit signed 
integer 

-9999 -2000,16000 0.0001 

Landsat SR QA  
16-bit signed 
integer 

-1 0, 32767 N/A 

 
Table 14: Values stored in the Landsat SR QA file 

Quality Flags Description 

Bit 0 Unused 

Bit 1 Data Quality flag (0=Valid data, 1=Invalid data) 

Bit 2 Cloud mask (0=clear, 1=cloudy) 

Bit 3 Cloud shadow mask 

Bit 4 Snow mask 

Bit 5 Land mask (0= water, 1=land) 

Bit 6-15 Unused 

  

3.2.3 Tree Cover 

The tree cover data product, though initially an ancillary layer for generating the forest and forest cover 

change product, quickly became an important source of information for the user community.  The team 

started generating the product late 2012 and stated distributing the data in early 2013.  We have 

processed GLS 2000, 2005 and 2010 to tree cover for this project.  Since there is no MODIS tree cover 

product for the 1990s, we have not been able to generate tree cover before the year 2000.  Further 

improvement of the tree cover product is ongoing with funding support from NASA Carbon Cycle 

Science and Land Use Land Cover Change programs.   
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Figure 27: A total of 29530 gigabytes of Landsat Tree Cover data has been downloaded at GLCF 

3.2.3.1 Data Formats and Values 

The derived tree cover product was tiled using the WRS-2 two tiling scheme and kept the native 

projection information from the Landsat tile.  Each tree cover data folder has 6 files associated with it; a 

browse file, preview file, data file, a per pixel uncertainty layer, an index file, and a text file.  See the 

example below: 

p015r033_TC_2000:  The tree cover data folder is named using the following convention:  p stands for 

path, followed by three digits which represent the WRS-2 path, then r which stands for row followed by 

the three digits which represent the WRS2- row.  Between the underscore are two letters (TC) which is 

the short name for the tree cover product, followed by four digits which represents the year for which 

the dataset was generated. 

 p015r033_TC_2000.browse.jpg:  A jpeg file that allows users to easily visualize the data in the 
browser without downloading the data. 

 p015r033_TC_2000.preview.jpg:  A small thumbnail jpeg. 

 p015r033_TC_2000.tif.gz:  The tree cover data file in GeoTIFF file format. 

 p015r033_TC_2000_err.tif.gz:  The uncertainty layer, that provides per pixel uncertainty per tile   

 p015r033_TC_2000_idx.tif.gz:  The data provenance layer which uses numerical values 
associated in the *_idx.txt file to allow the user to understand how many and which file each 
pixel was obtained from to create this single tile. 

 p015r033_TC_2000_idx.txt:  The list of files that were used to generate each tile. 
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Table 15: Code values stored in the tree cover data file. 

Value Label 

0-100 Percent of pixel area covered by tree cover 

200 Water 

210 Cloud 

211 Shadow 

220 Filled Value 
 

  

3.2.4 Forest Cover and Change 

Results of the world’s first global forest cover and change product (version 0) were presented at the 

NASA LCLUC meeting in 2012 and were subsequently published (Townshend et. al, 2012).   We made the 

beta release of the forest cover and change in May 2013 to select user group to assess the data get 

feedback.  Once we received the feedback we improved the product and released version 1 of the 

product in May of 2014.  We are currently distributing the forest cover and change product from 1990 to 

2000 and 2000 to 2005.  

 

Figure 28:  A total of 3,766 gigabytes of forest cover change data were downloaded 

 

3.2.4.1 Data Formats and Values 

The derived forest cover product was tiled using the WRS-2 tiling scheme and kept the native resolution 

information from the tree cover product that was used to generate the forest cover and change 

product.  Each forest cover folder has 4 files associated with it; a browse file, a preview file, the change 

map file and the change probability file.  See example below: 

p015r033_FCC_19902000:  The forest cover and change data folder is named using the following 

convention:  p stands for path, followed by three digits which represent the WRS-2 path, then r which 

stands for row followed by the three digits which represent the WRS2- row.  Between the underscore 
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are three letters (FCC) which is the short name for the tree cover product, followed by eight digits which 

represents the years for which the dataset was generated. 

 p015r033_FCC_19902000.browse.jpg:  A jpeg file that allows users to easily visualize the data in 
the browser without downloading the data. 

 p015r033_FCC_19902000.preview.jpg:  A small thumbnail jpeg. 

 p015r033_FCC_19902000_CM.tif.gz:  The forest cover and change file in GeoTIFF file format. 

 p015r033_FCC_19902000_CP.tif.gz:  The forest cover and change probability file.   
 

Table 16: Code values stored in the forest cover and change file. 

Value Label 

0 No Data 

2 Shadow 

3 Cloud 

4 Water 

11 Persistent Forest 

19 Forest Loss 

91 Forest Gain 

99 Persistent Non-forest 

 

3.2.5 Archival, distribution 

All of the data generated in this project was processed at the GLCF on a Linux cluster.  Additional 

Landsat data that was used to improve the tree cover and ultimately the forest cover and change 

product was downloaded from USGS using the Bulk Data Order web based application.  Though the data 

was initially distributed at GLCF, the data are shall be ultimately housed at LPDAAC.  As of now all of the 

data generate from this project has been transferred to LPDAAC for archival and can be downloaded at 

http://e4ftl01.cr.usgs.gov/provisional/gfcc/.   

  

http://e4ftl01.cr.usgs.gov/provisional/gfcc/
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