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Abstract

The integrated nested Laplace approximation (INLA) provides an interesting way of
approximating the posterior marginals of a wide range of Bayesian hierarchical models.
This approximation is based on conducting a Laplace approximation of certain functions
and numerical integration is extensively used to integrate some of the models parameters
out.

The R-INLA package offers an interface to INLA, providing a suitable framework for
data analysis. Although the INLA methodology can deal with a large number of models,
only the most relevant have been implemented within R-INLA. However, many other
important models are not available for R-INLA yet.

In this paper we show how to fit a number of spatial models with R-INLA, including its
interaction with other R packages for data analysis. Secondly, we describe a novel method
to extend the number of latent models available for the model parameters. Our approach
is based on conditioning on one or several model parameters and fit these conditioned
models with R-INLA. Then these models are combined using Bayesian model averaging
to provide the final approximations to the posterior marginals of the model.

Finally, we show some examples of the application of this technique in spatial statistics.
It is worth noting that our approach can be extended to a number of other fields, and not
only spatial statistics.

Keywords: INLA, spatial statistics, R.

1. Introduction

Bayesian inference has become very popular in spatial statistics in recent years. Part of this
success is due to the availability of computation methods to tackle fitting of spatial models.
Besag, York, and Mollié (1991) proposed in their seminal paper an appropriate way of fitting
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a spatial model using Markov chain Monte Carlo methods. This model has been extensively
used and extended to consider different types of fixed and random effects for spatial and
spatio-temporal analysis.

In general, fitting these models has been possible because of the availability of different com-
putational techniques, the most notable being Markov chain Monte Carlo (MCMC). For large
models or big data sets, MCMC can be tedious and reaching the required number of samples
can take a long time. Not to mention that autocorrelation may arise and that an increased
number of iterations may be required.

Alternatively, the posterior distributions of the parameters may be approximated in some
way. However, most models are highly multivariate and approximating the full posterior
distribution may not be possible in practice. The integrated nested Laplace approximation
(INLA, Rue, Martino, and Chopin 2009) focuses on the posterior marginals for latent Gaussian
models. Although these models may seem rather restricted, they appear in a fair number of
fields. This also means that INLA will be particularly useful when only marginal inference
on the model parameters is needed.

The R-INLA package (Rue, Martino, Lindgren, Simpson, Riebler, and Krainski 2014; Lindgren
and Rue 2015) for the R programming language (R Core Team 2014) provides an interface to
INLA (a free-standing programme) so that models can be fitted using standard R commands.
Results are readily available for plotting or further analysis. First of all, we describe how
R-INLA can be used together with other R packages for spatial data analysis. It is often the
case that spatial data are available in different formats that need to be loaded into R and
some pre-processing is required. Also, once the results are available, it is helpful to explain
how to display them on a map.

Although INLA is a general method to approximate the posterior marginals, R-INLA imple-
ments a number of popular latent models and prior distributions for the model parameters.
It is, however, difficult to fit new models with INLA if these are based on other distributions
not available in R-INLA. This may be an inconvenience when trying to develop new models
as there is no easy way of extending R-INLA to fit other models without writing them into
INLA itself.

This is why we also describe a way of extending the number of models that R-INLA can fit
with little extra effort. First of all, we consider one (or more) parameters in our model so
that, if they are fixed, the resulting model can be fitted with R-INLA. What we are doing
here is, in fact, to fit a model conditioned on the assigned values to the parameters. Then, we
can assign different values to these parameters and combine the resulting models in some way
to obtain a fit of the original model. We have used Bayesian model averaging and numerical
integration techniques to combine these models (Bivand, Gómez-Rubio, and Rue 2014b).

This paper is organized as follows. Section 2 describes the integrated nested Laplace ap-
proximation. In Section 3 the different latent models for spatial statistics are described. We
describe how to extend R-INLA to fit new models in Section 4. Some examples are provided
in Section 5. Finally, we discuss why our approach is relevant in Section 6.

2. Integrated nested Laplace approximation

Bayesian inference is based on computing the posterior distribution of a vector of model
parameters x conditioned on the vector of observed data y. Bayes’ rule states that this



Journal of Statistical Software 3

posterior distribution can be written down as

π(x|y) ∝ π(y|x)π(x) (1)

Here, π(y|x) is the likelihood of the model and π(x) represents the prior distribution on the
model parameters.

Usually, π(x|y) is a highly multivariate distribution and difficult to obtain. In particular,
it is seldom possible to derive it in a closed form. For this reason, several computational
approaches have been proposed to get approximations to it. MCMC is probably the most
widely used family of computational approaches to estimate the posterior distribution.

The marginal distribution of parameter xi can be denoted by π(xi|y) and it can be easily
derived from the full posterior by integrating out over the remaining set of parameters x−i.

Let us assume that we have a set of n observations y = {yi}ni=1, whose distribution is of the
exponential family. The mean of observation i is µi and it can depend on a linear predictor
ηi via a link function. In turn, the linear predictor ηi can be modelled as follows:

ηi = α+

nf∑
j=1

f (j)(uji) +

nβ∑
k=1

βkzki + εi (2)

α is the intercept, f (j) are functions on a set of nf random effects on a vector of covariates
u, βk are coefficients on some covariates z and εi are error terms. Hence, the vector of latent
effects is x = {{ηi}, α, {βk}, . . .}. Note that given our particular interest in spatial models,
terms f (j)(uji) can be defined as to model spatial or spatio-temporal dependence.

x is modelled using a Gaussian distribution with zero mean and variance-covariance matrix
Q(θ1). Now, θ1 is a vector of hyperparameters. Furthermore, x is assumed to be a Gaussian
Markov random field (GMRF, Rue and Held 2005). This means that Q(θ1) will fulfil a number
of Markov properties.

The distribution of observations yi will depend on the latent effects x and, possibly, a number
of hyperparameters θ2. Taking the vector of hyperparameters θ = (θ1, θ2), observations yi
will be independent of each other given xi and θ because of x being a GMRF.

Following Rue et al. (2009), the posterior distribution of the model latent effects x and
hyperparameters θ can be written as

π(x, θ|y) ∝ π(θ)π(x|θ)
∏
i∈I

π(yi|xi, θ) ∝ (3)

π(θ)|Q(θ)|1/2 exp{−1

2
xTQ(θ)x +

∑
i∈I

log(π(yi|xi, θ))}

I represents an index of observed data (from 1 to n), Q(θ) is a precision matrix on some
hyperparameters θ and log(π(yi|xi, θ)) is the log-likelihood of observation yi.

INLA allows different forms for the likelihood of the observations. This includes not only
distributions from the exponential family but also mixtures of distributions. Also, INLA can
handle observations with different likelihoods in the same model. Regarding the latent effects
x, different models can be used. We will describe some of these in more detail in Section 3.

The specification of the prior distributions π(θ) is also very flexible. These will often depend
on the latent effect but, in principle, the most common distributions are available and the
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user can define their own prior distribution in the R-INLA package (but we will return to this
later).

Hence, we can write the marginals of the elements in x and θ (i.e., latent effects and hyper-
parameters) as

π(xi|y) =

∫
π(xi|θ,y)π(θ|y)dθ (4)

and

π(θj |y) =

∫
π(θ|y)dθ−j (5)

In order to estimate the previous marginals, we need π(θ|y) or, alternatively, a convenient
approximation that we will denote by π̃(θ|y). Initially, this approximation can be taken as

π̃(θ|y) ∝ π(x, θ,y)

π̃G(x|θ,y)

∣∣∣∣
x=x∗(θ)

(6)

Here π̃G(x|θ,y) is a Gaussian approximation to the full conditional of x and x∗(θ) is the mode
of the full conditional for a given value of θ. Rue et al. (2009) take this approximation and
use it to compute the marginal distribution of xi using numerical integration:

π̃(xi|y) =
∑
k

π̃(xi|θk,y)× π̃(θk|y)×∆k (7)

Here ∆k are the weights associated with the ensemble of values θk, defined on a multidimen-
tional grid over the space of hyperparameters.

Note that in the previous equation it is important to have good approximations of π(xi|θk,y).
A Gaussian approximation π̃G(xi|θk,y), with mean µi(θ) and variance σ2i (θ), may be a good
starting point but a better approximation may be required in other cases. Rue et al. (2009)
developed better approximations based on alternative approximation methods, such as the
Laplace approximation. For example, they have used the Laplace approximation to obtain:

π̃LA(xi|θ,y) ∝ π(x, θ,y)

π̃GG(x−i|xi, θ,y)

∣∣∣∣
x−i=x∗

−i(xi,θ)

(8)

π̃GG(x−i|xi, θ,y) is a Gaussian approximation to x−i|xi, θ,y around its mode x∗−i(xi, θ).

Rue et al. (2009) develop a simplified Laplace approximation to improve π̃LA(xi|θ,y) using
a series expansion of the Laplace approximation around xi. This approximation is computa-
tionally less expensive, and it also corrects for location and skewness.

2.1. The R-INLA package

An interface to INLA has been provided as an R package called R-INLA, which can be
downloaded from http://www.r-inla.org/, together with the free-standing external INLA
programme. R-INLA provides a user model interface similar to the one used to fit generalized
additive models (GAM) with function gam() in the mgcv package (Wood 2006). It can handle
fixed effects, non-linear terms and random effects in a formula argument. The interface is
flexible enough to allow for the specification of different priors and model fitting options.
Non-linear terms and random effects are included in the formula as calls to the f() function.

http://www.r-inla.org/
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The model is fitted with a call to function inla(), which will return the fitted model as
an inla object. Note that, by default, only some results will be returned. These include
the marginal distributions of the latent effects and hyperparameters, as well as summary
statistics.

In addition to the posterior marginals, R-INLA can provide a number of additional quantities
on the fitted model. For example, it can provide the log-marginal likelihood π(y) which can
be used for model selection. Other model selection criteria such as the DIC (Spiegelhalter,
Best, Carlin, and Van der Linde 2002) and CPO (Held, Schödle, and Rue 2010) have also
been implemented.

Furthermore, R-INLA includes a number of options to define the prior distributions for the
parameters in the model. Well-known prior distributions are available and the user can define
their own prior distributions as well.

In the next Section we describe different examples of the use of R-INLA for spatial statistics,
in which we have included a detailed description on how inla() should be called.

3. Spatial models with INLA

As discussed in Section 2, spatial dependence can be included as part of the vector of latent
effects x. In principle, any number of random effects can be included in the model. In this
Section, we will describe the different options available, depending on the type of problem. A
full description of the models described here can be found in the R-INLA website at http:

//www.r-inla.org/, but we have included a summary. Blangiardo, Cameletti, Baio, and Rue
(2013) and Gómez-Rubio, Bivand, and Rue (2014b) also discuss the different spatial models
included in R-INLA.

First we will briefly introduce other papers describing the use of INLA and R-INLA for spatial
statistics. Schrödle and Held (2010) describe the use of spatial and spatio-temporal models for
disease mapping, including ecological regression. Schrödle and Held (2011) expand the number
of spatio-temporal models that can be used with R-INLA, and show the use of setting linear
constraints to make complex spatio-temporal effects identifiable. Schrödle, Held, Riebler, and
Danuser (2011) show how to use spatio-temporal models for disease surveillance. Eidsvik,
Finley, Banerjee, and Rue (2012) focus on the use of R-INLA for the analysis of large spatial
datasets. Finally, Ruiz-Cardenas, Krainski, and Rue (2012) develop spatio-temporal dynamic
models with R-INLA.

3.1. Analysis of lattice data

First of all, we will discuss the analysis of lattice data because this will establish the basis
for other types of analyses. In the analysis of lattice data observations are grouped according
to a set of areas, which usually represent some sort of administrative region (neighborhoods,
municipalities, provinces, countries, etc.).

R-INLA includes a latent model for uncorrelated random effects. In this case, the random
effects ui are modelled as

ui ∼ N(0, τu) (9)

where τu refers to the precision of the Gaussian distribution. It should be noted that R-INLA
assigns a prior to log(τu) which, by default, is a log-gamma distribution. Although this model

http://www.r-inla.org/
http://www.r-inla.org/
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is not spatial, it can be combined with other spatial models. Using log(τu) instead of simply
τu provides some advantages as log(τu) is not constrained to be positive. This is particularly
useful when optimising to find the mode of log(τu), for example.

In order to model spatial correlation, neighborhoods must be defined among the study areas.
It is often considered that two areas are neighbors is they share a common boundary. Spatial
autocorrelation is modelled using a Gaussian distribution with zero mean and a precision
matrix that will model correlation between neighbors. Given that latent effects are a GMRF,
we can define the variance-covariance matrix of the random effects as

Σ =
1

τ
Q−1 (10)

where τ is a precision parameter and matrix Q encodes the spatial structure. Given that we
are assuming a latent GMRF, this also means that matrix Q will be defined such as element
Qij is zero if areas i and j are not neighbors. This means that Q is often a very sparse matrix.
See, for example, Rue and Held (2005) for details.

Available specifications for spatial dependence includes the intrinsic conditional autoregressive
(CAR) specification (Besag et al. 1991). This will produce a Q matrix in which element Qii
is ni (the number of neighbors of area i) and element Qij (with i 6= j) is -1 if areas i and j
are neighbors and 0 otherwise. This means that the spatial random effects vi are distributed
as

vi|vj , τv ∼ N(
1

ni

∑
i∼j

vj ,
1

τvni
) i 6= j (11)

τv is the conditional precision of the random effects. As in the previous model, R-INLA uses
a log-gamma prior on log(τv).

In addition, a proper version of this model is available as well, for which the spatial random
effects are distributed as

vi|vj , τv ∼ N(
1

ni + d

∑
i∼j

vj ,
1

τv(ni + d)
) i 6= j (12)

d is a positive quantity to make the distribution proper. By default, a log-gamma distribution
is assigned to log(d).

A more general approach is obtained with the following precision matrix:

Q = (I − ρ

λmax
C) (13)

Here I is the identity matrix, ρ a spatial autocorrelation parameter, C an adjacency matrix
and λmax the maximum eigenvalue of C. R-INLA assigns a Gaussian prior on log(ρ/(1− ρ)).
This specification ensures that ρ takes values between 0 and 1.

In the following example we use the Boston housing data, which is described in Harrison
and Rubinfeld (1978), to develop an example on several spatial models. This data set records
median price for houses that were occupied by their owners plus some other relevant covariates
(see Harrison and Rubinfeld 1978; Pace and Gilley 1997, for details). Data have been recorded
at the tract level and the neighborhood structure of the tracts is also available, and it is
available in the boston data set from the R package spdep (Bivand 2014). In addition, this
data set is also available in a shapefile, which is the one we will use in this example. This
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will provide a more general example on how to load external data into R to fit models with
R-INLA.

readShapePoly(), from package maptools (Bivand and Lewin-Koh 2014), can be used to load
vector data from a shapefile. Alternatively, readOGR(), from package rgdal (Bivand, Keitt,
and Rowlingson 2014a), provides a more general data loading framework for vector data since
it supports a wider range of formats. This is the one we have used to load the Boston data
set:

R> library("rgdal")

R> boston <- readOGR(system.file("etc/shapes", package = "spdep")[1],

+ "boston_tracts")

Here, readOGR() takes the directory where the layer (shapefile) is located and the layer name,
which in this case is the name of the shapefile, as arguments and return an object of type
SpatialPolygonsDataFrame. This data object is used to store the tract boundaries plus the
associated data (tract name and other variables).

Before fitting any spatial model, the neighborhood structure needs to be defined. A common
criterion is to consider that two areas are neighbors if they share a common boundary. Func-
tion poly2nb() will take the tract boundaries and perform this operation to provide us with
the adjacency structure of the Boston tracts as a nb object:

R> library("spdep")

R> bostonadj <- poly2nb(boston, queen = FALSE)

Here, we have also set queen = FALSE so that queen adjacency is not used, i.e., in order to
consider two areas as neighbors more than one shared point is required. We have converted
this into a binary matrix to be used with R-INLA using function nb2mat(). Furthermore,
the adjacency matrix is converted into a sparse matrix of class dgTMatrix to reduce memory
usage. This will be passed to function f() when defining the spatial model.

R> adj <- nb2mat(bostonadj, style = "B")

R> adj <- as(adj, "dgTMatrix")

A summary of some latent models implemented in R-INLA, and that can be used within
the f() function, is available in Table 1. Note that this is not an exhaustive list and that a
complete list of the available latent models can be obtained from the R-INLA documentation.
We have also included a column showing whether these models are restricted to a regular grid.
Also, detailed examples are available from the R-INLA website at http://www.r-inla.org/.

Fixed effects (including the intercept) in R-INLA have a Gaussian prior with fixed mean and
precision, which are 0 and 0.01 (or 0 for the intercept) by default, respectively. These values
can be changed using option control.fixed in the inla() call. control.fixed must take
a named list of arguments, which are used to control how to handle the fixed effects in the
model.

In this named list, mean.intercept and prec.intercept can be used to set the parameters
of the Gaussian prior of the intercept, whilst mean and prec are the analogous parameters to
define the priors for the other fixed effects. These can be a numeric value or another named
list, using the names of fixed effects, to set different priors for different effects. Note that

http://www.r-inla.org/
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Name in f() Model Regular grid

besag Intrinsic CAR No
besagproper Proper CAR No
bym Convolution model No
generic0 Σ = 1

τQ
−1 No

generic1 Σ = 1
τ (In − ρ

λmax
C)−1 No

rw2d 2-D random walk Yes
matern2d Matérn correlation Yes

Table 1: Summary of some latent models implemented in R-INLA for spatial statistics.

precisions in the fixed effects priors cannot be estimated as was the case with the different
random effects presented before.

The model that we are fitting is:

yi = α+ βXi + vi + εi (14)

where α is the model intercept, β a vector of coefficients of the covariates Xi, vi a random
effect with an intrinsic CAR specification and εi is random Gaussian error term.

As f() needs an area index which must have different values for different areas, this is first
defined in variable idx.

R> library("INLA")

R> boston$idx <- 1:nrow(boston)

R> form <- log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + I(RM^2) +

+ AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT) +

+ f(idx, model = "besag", graph = adj)

R> btdf <- as.data.frame(boston)

R> m1 <- inla(form, data = btdf, control.predictor = list(compute = TRUE))

Note how the call to inla() is similar to fitting other regression models with R with glm()

or gam(). Furthermore, it is very easy to include spatial random effects with function f()

in the formula passed to inla(). Finally, control.predictor = list(compute = TRUE) is
used to compute summary statistics on the fitted values.

A summary of the model can be obtained as follows:

R> summary(m1)

Call:

"inla(formula = form, data = btdf, control.predictor = list(compute = TRUE))"

Time used:

Pre-processing Running inla Post-processing Total

0.5940 2.2684 0.1178 2.9802

Fixed effects:
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mean sd 0.025quant 0.5quant 0.975quant mode kld

(Intercept) 3.7798 0.1661 3.4536 3.7798 4.1058 3.7798 0

CRIM -0.0073 0.0011 -0.0094 -0.0073 -0.0053 -0.0073 0

ZN 0.0003 0.0005 -0.0006 0.0003 0.0013 0.0003 0

INDUS -0.0005 0.0024 -0.0051 -0.0005 0.0041 -0.0005 0

CHAS1 -0.0443 0.0299 -0.1030 -0.0443 0.0144 -0.0443 0

I(NOX^2) -0.4209 0.1440 -0.7037 -0.4210 -0.1384 -0.4209 0

I(RM^2) 0.0101 0.0011 0.0080 0.0101 0.0122 0.0101 0

AGE -0.0012 0.0005 -0.0022 -0.0012 -0.0003 -0.0012 0

log(DIS) -0.1806 0.0719 -0.3217 -0.1806 -0.0395 -0.1806 0

log(RAD) 0.0483 0.0208 0.0076 0.0483 0.0891 0.0483 0

TAX -0.0003 0.0001 -0.0005 -0.0003 0.0000 -0.0003 0

PTRATIO -0.0162 0.0053 -0.0265 -0.0162 -0.0058 -0.0162 0

B 0.0006 0.0001 0.0003 0.0006 0.0008 0.0006 0

log(LSTAT) -0.2434 0.0223 -0.2873 -0.2434 -0.1996 -0.2434 0

Random effects:

Name Model

idx Besags ICAR model

Model hyperparameters:

mean sd

Precision for the Gaussian observations 1.626e+04 1.707e+04

Precision for idx 1.222e+01 7.817e-01

0.025quant 0.5quant

Precision for the Gaussian observations 7.582e+02 1.096e+04

Precision for idx 1.074e+01 1.220e+01

0.975quant mode

Precision for the Gaussian observations 6.180e+04 1.816e+03

Precision for idx 1.381e+01 1.216e+01

Expected number of effective parameters(std dev): 501.85(5.348)

Number of equivalent replicates : 1.008

Marginal Likelihood: -212.85

Posterior marginals for linear predictor and fitted values computed

The output includes summary statistics of the posterior marginals of the coefficients of the
fixed effects plus the precisions of the error term and intrinsic CAR random effect. In addi-
tion, kld reports the Kullback-Leibler divergence between the Gaussian and the (simplified)
Laplace approximation to the marginal posterior densities. This provides information about
the accuracy of the Gaussian approximation.

The marginal likelihood of the model is also reported and it is computed by integrating all the
model parameters out. Hence, it is not the predictive marginal likelihood and it can be used
to perform model selection, for example. The effictive number of parameters, as defined in
Spiegelhalter et al. (2002), and the associated number of equivalent replicates are also shown.
See Martino and Rue (2010) for more details on the R-INLA output.
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Figure 1: Marginals of the fixed effects, and the precisions of the error term and spatial
random effects, Boston housing data.

Figure 1 shows the estimated marginals of the coefficients of the fixed effects and the precisions
of the random effects in the model. These distributions can be used to compute summary
statistics for the model parameters. In the previous R-INLA output these marginals have been
used to compute the posterior mean, standard deviation, mode and some quantiles (0.025,
0.5 and 0.975).

Fitted values can be easily displayed in a map. First, we need to add all the required values
to the SpatialPolygonsDataFrame:

R> boston$LOGCMEDV <- log(boston$CMEDV)

R> boston$FTDLOGCMEDV <- m1$summary.fitted[, "mean"]

Note that we will represent values in the log-scale. Next, we can use spplot() to display
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Figure 2: Observed and predicted median values, Boston housing data.

both the observed and the predicted values of house prices. In the following example, which
can be seen in Figure 2, we have also used package RColorBrewer (Neuwirth 2014) to define
a suitable color palette:

R> library("RColorBrewer")

R> spplot(boston, c("LOGCMEDV", "FTDLOGCMEDV"),

+ col.regions = brewer.pal(9, "Blues"), cuts = 8,

+ names.attr = c("Observed log-CMEDV", "Predicted log-CMEDV"))

To provide an alternative visualisation of the results, we have included a short example using
function qmap() from the ggmap package (Kahle and Wickham 2013). First of all we will
reproject our data to be WGS84. With fortify() the boston dataset is converted into a
suitable format to be used when plotting and then the log median values are added to the
new data.

R> bostonf <- spTransform(boston, CRS("+proj=longlat +datum=WGS84"))

R> library("ggmap")

R> bostonf <- fortify(bostonf, region = "TRACT")

R> idx <- match(bostonf$id, as.character(boston$TRACT))

R> bostonf$LOGCMEDV <- boston$LOGCMEDV[idx]

qmap() is based on the the grammar of graphics implemented in the ggplot2 package (Wick-
ham 2009). In the next example, qmap() is used to get satellite data from the Boston area,
whilst geom_polygon() adds the boundaries:

R> qmap("boston", zoom = 10, maptype = "satellite") + geom_polygon(

+ data = bostonf, aes(x = long, y = lat, group = group, fill = LOGCMEDV),

+ colour = "white", alpha = 0.8, size = 0.3)

The resulting map can be seen in Figure 3.
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Figure 3: Display of the Boston housing data set using ggmap and Google Maps.

3.2. Point patterns

Point patterns are analyzed with INLA as the result of a counting process, i.e., points are not
modelled directly but they are aggregated over a a grid of small squares. For this reason, the
analysis of point patterns is conducted similarly to that of lattice data: counts are available
for each square and these are assigned neighbors according to the adjacent squares. Then,
counts can be smoothed using an appropriate non-linear term, such as spatial random effects.
Hossain and Lawson (2009) compare different approximations to the analysis of point patterns,
including methods that are based on discretisation of the study region.

In the following example we use the Japanese black pine data set from R package spatstat
(Baddeley and Turner 2005). This data set records the location of Japanese black pine saplings
in a square sampling in a natural forest. This example is reproduced from Gómez-Rubio et al.
(2014b).

Hence, we first split the study area into smaller squares to create a grid of 10× 10 squares.

R> library("spatstat")

R> data("japanesepines")

R> japd <- as.data.frame(japanesepines)

R> Nrow <- 10

R> Ncol <- 10

R> n <- Nrow * Ncol

R> grd <- GridTopology(cellcentre.offset = c(0.05, 0.05),

+ cellsize = c(1/Nrow, 1/Ncol), cells.dim = c(Nrow, Ncol))
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After the creation of the grid, we have used function over() on the set of points and the
newly defined squares to find how many points can be found in each square.

R> polygrdjap <- as(grd, "SpatialPolygons")

R> idxpp <- over(SpatialPoints(japd), polygrdjap)

R> japgrd <- SpatialGridDataFrame(grd, data.frame(Ntrees = rep(0, n)))

R> tidxpp <- table(idxpp)

R> japgrd$Ntrees[as.numeric(names(tidxpp))] <- tidxpp

Next, an index variable is built to create the spatial neighborhood structure to be passed
to the f() function. Note that care must be taken as R and R-INLA may have a different
ordering of the areas when defining the adjacency matrix.

R> japgrd$SPIDX <- 1:n

R> japnb <- poly2nb(polygrdjap, queen = FALSE, row.names = 1:100)

R> adjpine <- nb2mat(japnb, style = "B")

R> adjpine <- as(adjpine, "dgTMatrix")

Here we have avoided using a queen adjacency as this will consider as neighbors two areas
which only share a corner.

Finally, we define the call to inla() using a formula which includes spatial random effects
based on the grid of squares. In addition, we have set other options to compute the DIC, with
control.compute = list(dic = TRUE), and the marginals of the linear predictors, using
control.predictor = list(compute = TRUE). We have included the specification of the
prior distributions of the log-precisions of unstructured and spatial random effects as well.

R> fpp <- Ntrees ~ 1 + f(japgrd$SPIDX, model = "bym", graph = adjpine,

+ hyper = list(prec.unstruct = list(prior = "loggamma",

+ param = c(0.001, 0.001)),

+ prec.spatial = list(prior = "loggamma", param = c(0.1, 0.1))))

R> japinlala <- inla(fpp, family = "poisson", data = as.data.frame(japgrd),

+ control.compute = list(dic = TRUE),

+ control.inla = list(tolerance = 1e-20, h = 1e-08),

+ control.predictor = list(compute = TRUE))

R> japgrd$INLALA <- japinlala$summary.fitted.values[, "mean"]

The former model is the one that we have employed with the Boston data set on an irregular
lattice. Given that now we are considering a regular lattice it is also possible to use a two-
dimensional random walk for spatial smoothing:

R> fpprw2d <- Ntrees ~ 1 + f(japgrd$SPIDX, model = "rw2d", nrow = 10,

+ ncol = 10, hyper = list(prec = list(prior = "loggamma",

+ param = c(0.001, 0.001))))

R> japinlalarw2d <- inla(fpprw2d, family = "poisson",

+ data = as.data.frame(japgrd), control.compute = list(dic = TRUE),

+ control.inla = list(tolerance = 1e-20, h = 1e-08),

+ control.predictor = list(compute = TRUE))

R> japgrd$INLALARW2D <- japinlalarw2d$summary.fitted.values[, "mean"]
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DATA INLA−BYM INLA−RW2D
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Figure 4: Estimation of the intensity of a point pattern with R-INLA, Japanese black pine
dataset.

Figure 4 shows the original counts and the smoothed counts. Note that this is similar to
estimating the intensity of an inhomogeneous point pattern using a smoothing method.

3.3. Geostatistics

R-INLA deals with geostatistical data on a regular grid. This means that observations need to
be matched to the points in the grid and that those points with no observations attached are
considered as missing values. Hence, this is somewhat similar to the analysis of lattice data
and point patterns. However, R-INLA provides a number of options to build model-based
geostatistical models (Diggle and Ribeiro 2007). First of all, different likelihoods can be used.
Secondly, there are different options to define the spatial random effects. Although it is still
possible to model spatial dependence in the grid of points using a CAR specification, R-INLA
provides a two-dimensional Matérn covariance function.

This correlation allows, for example, the use of exponentially decaying functions such as

Σij = σ2 exp(−dij/ϕ) (15)

where dij is the distance between points i and j, and ϕ is a parameter that controls the scale
of the spatial dependence.

More recently, Lindgren, Rue, and Lindström (2011) follow a different approach based on a
triangulation on the sampling points and the use of stochastic partial differential equations.
Now, the spatial effects are defined as

u(s) =
n∑
k=1

ψk(s)wk, s ∈ R2 (16)

Here, {ψk(s)} are a basis of functions and wk are associated weights. Weights are assumed
to be Gaussian. The advantages of this approach for spatial statistics are fully described in
Cameletti, Lindgren, Simpson, and Rue (2013).

In order to show how to fit geostatistical models with R-INLA we reproduce here an example
from Gómez-Rubio et al. (2014b) based on the Rongelap data set (Diggle and Ribeiro 2007),
which records radionuclide concentration at 157 different locations in Rongelap island. We
have restricted the analysis to one of the clusters in the north-east part of the island because
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observations need to be matched to a regular grid of points. For this analysis we have used R
packages geoR (Ribeiro and Diggle 2001) and geoRglm (Christensen and Ribeiro 2002).

First of all, data are loaded and the data from the desired clusters are extracted from
the original data set by checking that their coordinates are in the window (−700,−500) ×
(−1900,−1700).

R> library("geoR")

R> library("geoRglm")

R> data("rongelap")

R> rgldata <- as.data.frame(rongelap)

R> xy <- rongelap[[1]]

R> idx1 <- (xy[, 1] < -500 & xy[, 1] > -700 & xy[, 2] > -1900 &

+ xy[, 2] < -1700)

R> rgldata <- rgldata[idx1, ]

The next step is to define the grid topology for the grid that will be used to match these
points to. The grid is defined to be of dimension 5× 5.

R> Nrow <- 5

R> Ncol <- 5

R> n <- Nrow * Ncol

R> grdoffset <- c(min(rgldata$X1), min(rgldata$X2))

R> csize1 <- diff(range(rgldata$X1))/(Nrow - 1)

R> csize2 <- diff(range(rgldata$X2))/(Ncol - 1)

R> grd <- GridTopology(cellcentre.offset = grdoffset,

+ cellsize = c(csize1, csize2), cells.dim = c(Nrow, Ncol))

Data will be placed in a SpatialGridDataFrame (using the previously defined grid topology)
and re-organized according to what R-INLA expects for this model (i.e., grid data stored by
column). An index variable IDX is added to be used in f() when defining the model. However,
R-INLA will rely on how the rows are ordered in the data passed to inla() when defining
distances and adjacencies (i.e., the index variable ordering will not be considered).

R> inla2sp <- inla.lattice2node.mapping(Nrow, Ncol)[, Ncol:1]

R> inla2sp <- as.vector(inla2sp)

R> spgrd <- SpatialGridDataFrame(grd, as.data.frame(rgldata[inla2sp, ]))

R> spgrd$IDX <- 1:nrow(spgrd@data)

Next, we create a SpatialPolygons with the boundaries of the squares in the grid. This way,
it is easy to match the data to the newly created grid using function over().

R> polygrd <- as(grd, "SpatialPolygons")

R> dataidx <- over(SpatialPoints(as.matrix(rgldata[, 1:2])), polygrd)

It should be noted that radionuclide concentration is measured at each square by the average
of the observations in the square, and this needs to be computed beforehand.

R> yag <- by(rgldata$data, dataidx, sum)

R> umag <- by(rgldata$units.m, dataidx, sum)

R> ratioag <- yag/umag
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DATA INLA−MATERN2D INLA−RW2D
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Figure 5: Observed and estimated radionuclide concentration in Rongelap island.

Then, a new column is added to the SpatialGridDataFrame with these averages. NA will be
used for the squares with no data so that these values will be imputed from the model.

R> spgrd$ratioag <- NA

R> spgrd$ratioag[as.numeric(names(ratioag))] <- ratioag

Here we define a model with an intercept term and a random effect of the Matérn class. Note
how we have fixed, for convenience, the value of the range and precision.

R> formula1 <- ratioag ~ 1 + f(spgrd$IDX, model = "matern2d", nrow = Nrow,

+ ncol = Ncol, hyper = list(range = list(initial = log(sqrt(8)/0.5),

+ fixed = TRUE), prec = list(initial = log(1), fixed = TRUE)))

R> rglinlala <- inla(formula1, family = "poisson",

+ control.predictor = list(compute = TRUE),

+ control.compute = list(dic = TRUE),

+ data = as.data.frame(spgrd))

R> spgrd$INLALA <- rglinlala$summary.fitted.values[, "mean"]

Similarly as in the point patterns example, here we have also used a two dimensional random
walk for spatial smoothing.

R> formularw2d <- ratioag ~ 1 + f(spgrd$IDX, model = "rw2d", nrow = Nrow,

+ ncol = Ncol, hyper = list(prec = list(prior = "loggamma",

+ param = c(1, 1))))

R> rglinlalarw2d <- inla(formularw2d, family = "poisson",

+ control.predictor = list(compute = TRUE),

+ control.compute = list(dic = TRUE),

+ data = as.data.frame(spgrd))

R> spgrd$INLALARW2D <- rglinlalarw2d$summary.fitted.values[, "mean"]

Figure 5 shows the observed and estimated radionuclide concentration in Rongelap island. It
can be seen how our model has spatially smoothed the observed values.
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DATA INLA−BYM INLA−RW2D BAYESX
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Figure 6: Estimation of the intensity of a point pattern with R-INLA and BayesX, Japanese
black pine dataset.

3.4. R-INLA and other packages for Bayesian spatial modelling

R-INLA is not the only package for Bayesian spatial modelling. Bivand, Pebesma, and Gómez-
Rubio (2013, Chapter 10) compare different packages for Bayesian modelling in the contect
of disease mapping. We wil focus here in R2BayesX (Umlauf, Kneib, Lang, and Zeileis 2013;
Umlauf, Adler, Kneib, Lang, and Zeileis 2015) because it provides a way to defining spatial
models as R-INLA.

For example, in order to reproduce the example on the Japanese black pine data with
R2BayesX we can do the following:

R> library("R2BayesX")

R> bayesxadj <- nb2gra(japnb)

R> japbyx <- bayesx(Ntrees ~ 1 + sx(SPIDX, bs = "re") +

+ sx(SPIDX, bs = "spatial", map = bayesxadj), family = "poisson",

+ data = as.data.frame(japgrd))

Function nb2gra() is used to convert our adjacency matrix into an object of class gra, which is
used in R2BayesX to store adjacencies. bayesx() takes similar arguments as inla() and the
model can be expressed using a formula, with sx() used to define the random effects. sx(idx,
bs = "re") defines independent Gaussian random effects and the spatial random effects are
defined in sx(TRACT, bs = "spatial", map = bayesxadj) using adjancency matrix defined
in bayesxadj.

Retrieving the predicted data requires some care as they are reordered, but is is as simple as:

R> japgrd$BAYESX <- japbyx$fitted.values[

+ order(japbyx$bayesx.setup$order), "mu"]

Finally, we compare the fitted values obtained with R-INLA and R2BayesX in Figure 6. Note
that differences appear not only because of the different models used but also because of the
choice of prior distributions.
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4. Extending R-INLA to fit new models

Although the current implementation of INLA in the R-INLA package provides a reasonable
number of models for spatial dependence it may be the case that we need to include some
other models. As it is now, this is not possible without adding to the code of the external
INLA programme.

Bivand et al. (2014b) describe a simple way of extending INLA to use other latent models. In
particular they focus on some latent models used in spatial econometrics that are not available
as part of the R-INLA package at the moment. A new latent class has been added recently
and it is described in Gómez-Rubio, Bivand, and Rue (2014a).

This approach is based on considering a model where one or several parameters have been
fixed in a way that makes the conditioned model fittable with R-INLA. If we denote by ρ the
vector of parameters to fix and by ρ̂ a specific set of fixed parameter values, the full posterior
marginal could be written as

π(x, θ|y, ρ̂) (17)

Taking this into account, it is clear that when conditioning on ρ = ρ̂ R-INLA will give us an
approximation to π(xi|y, ρ̂) and π(θi|y, ρ̂).

Note that the full posterior distribution can be obtained by integrating ρ out, i.e.,

π(x, θ|y) =

∫
π(x, θ|y, ρ)π(ρ|y)dρ (18)

where π(ρ|y) is the posterior distribution of ρ. Also, note that this can be written as

π(ρ|y) ∝ π(y|ρ)π(ρ) (19)

Here π(ρ) is a prior distribution on ρ and π(y|ρ) is the marginal likelihood of the model,
which is reported by R-INLA. Hence, π(ρ|y) can be estimated by re-scaling the expression in
Equation 19.

The posterior distribution of ρ can be estimated by defining a fine grid of values S = {ρi}ri=1

so that π(ρi|y), i = 1, . . . , r are computed. Then π(ρ|y) can be obtained by fitting and re-
scaling a spline (or other non-linear function) to the previous values. Using simple numerical
integration techniques we can obtain an approximation to π(x, θ|y) as follows:

π(x, θ|y) =

∫
π(x, θ|y, ρ)π(ρ|y)dρ '

∑
ρi∈S

π(x, θ|y, ρi)π(ρi|y)∆i (20)

where ∆i is the amplitude of the interval used in the discretisation of ρ.

Note that the previous expression can be regarded as a weighted average of the different
models fitted after conditioning on different values of ρ.

From Equation 20 it is clear that we can obtain the following approximations to the posterior
marginals of the individual latent parameters and hyperparameters:

π̂(xi|y) =
∑
j

π(xi|y, ρj)wj (21)

π̂(θi|y) =
∑
j

π(θi|y, ρj)wj (22)
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wj is a weight associated with ρj as follows:

wj = π(ρj |y)∆j (23)

This is like carrying out Bayesian model averaging (Hoeting, Madigan, Raftery, and Volinsky
1999) on the different conditioned models fitted with R-INLA. Altogether, this provides a way
of combining simpler models to obtain our desired model. In Section 5 we show how to apply
these ideas to different models in spatial statistics.

Note that this approach can be easily extended to the case of ρ being a discrete random
variable.

4.1. Implementation

We have implemented this approach in an R package called INLABMA, available from CRAN.
The package includes some general functions to conduct Bayesian model averaging of models
fitted with INLA. In addition, we have included some wrapper functions to fit the models
described in Section 5.

5. Examples

5.1. Leroux model

Leroux, Lei, and Breslow (1999) propose a model for the analysis of spatial data in a lattice
which is similar to the one by Besag et al. (1991), in the sense that they split variation
according to spatial and non-spatial patterns. Rather than including the spatial and non-
spatial random effect as a sum in the linear term they consider a single random effect as
follows:

u ∼ MVN(0,Σ); Σ = σ2((1− λ)In + λM)−1 (24)

Here M is the precision matrix of a process with spatial structure and we will take that of
an intrinsic CAR specification. Hence, the precision matrix is, in a sense, a mixture of the
precisions of a non-spatial and a spatial one. λ controls how strong the spatial structure is.
For λ = 1 the effect is entirely spatial whilst for λ = 0 there is no spatial dependence.

In principle, this is not a model that R-INLA can fit. However, if λ is fixed, then the random
effects are Gaussian with a known structure for the variance-covariance matrix which can be
fitted using a generic0 latent model.

Boston housing data

Here we revisit the Boston housing data to fit the Leroux et al. model. First of all, it is
worth mentioning that the model needs a wrapper function to be fitted for a given value of
the spatial parameter λ. This wrapper function is included in the R package R-INLA and it
is based on the generic0 latent model available in R-INLA. Once λ is fixed the model can be
easily fitted with R-INLA, as the latent effect is a multivariate Gaussian random effect with
zero mean and precision matrix as in Equation 24. We repeat this procedure for different
values of λ to obtain a list of fitted models to be combined later.

Hence, we have written a simple wrapper function which is included in package INLABMA
(Gómez-Rubio and Bivand 2014):
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R> library("INLABMA")

R> leroux.inla

function (formula, d, W, lambda, improve = TRUE, fhyper = NULL, ...)

{

W2 <- diag(apply(W, 1, sum)) - W

Q <- (1 - lambda) * diag(nrow(W)) + lambda * W2

assign("Q", Q, environment(formula))

if (is.null(fhyper)) {

formula <- update(formula, . ~ . + f(idx, model = "generic0",

Cmatrix = Q))

}

else {

formula <- update(formula, . ~ . + f(idx, model = "generic0",

Cmatrix = Q, hyper = fhyper))

}

res <- INLA::inla(formula, data = d, ...)

if (improve)

res <- INLA::inla.rerun(res)

res$logdet <- as.numeric(Matrix::determinant(Q)$modulus)

res$mlik <- res$mlik + res$logdet/2

return(res)

}

<environment: namespace:INLABMA>

In the previous code, the precision matrix Q is created using the adjacency matrix W and the
value of λ. Then the generic0 model is added to the formula with the fixed effects. Finally
we correct the marginal log-likelihood π(y|λ) (conditioned on the value of λ) by adding half
the log-determinant of ((1 − λ)In + λM). Note that, in principle, this is not needed to fit
a single model and obtain the approximations to the posterior marginals as it is a constant.
However, we are fitting and combining several models so we need to correct for this because
this scaling factor will change with the value of λ. Argument ... is used to pass any other
options to inla(). This can be used to tune and set a number of other options.

Also, the adjacency matrix is taken from the data provided in the boston data set. Note
that we will be using a binary adjacency matrix as the random effects have an intrinsic CAR
specification:

R> boston.matB <- listw2mat(nb2listw(bostonadj, style = "B"))

R> bmspB <- as(boston.matB, "CsparseMatrix")

Function inla.leroux is used in the example below to compute the fitted models for the
Leroux et al. model. In this case, we take λ to be in the interval (0.8, 0.99) after previous
assessment on where π(λ|y) has its mode. Also, we define a prior for the precision of the
random effects in variable fhyper. The prior for the precision of the error term is defined in
errorhyper. In addition, we have used mclapply to parallelize the computations on operating
systems supporting forking (not Windows). Note that this is an advantage of fitting these
conditioned models compared with standard MCMC methods.
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Mean (INLA) SD (INLA) Mean (MCMC) SD (MCMC)

Intercept 3.8055 0.1770 3.8018 0.1651
CRIM −0.0076 0.0011 −0.0077 0.0011
ZN 0.0003 0.0005 0.0003 0.0004

INDUS −0.0006 0.0023 −0.0007 0.0023
CHAS1 −0.0338 0.0302 −0.0342 0.0305

I(NOX^2) −0.4374 0.1412 −0.4467 0.1380
I(RM^2) 0.0099 0.0011 0.0099 0.0011

AGE −0.0011 0.0005 −0.0011 0.0005
log(DIS) −0.1663 0.0616 −0.1624 0.0618
log(RAD) 0.0506 0.0205 0.0484 0.0220

TAX −0.0003 0.0001 −0.0003 0.0001
PTRATIO −0.0164 0.0053 −0.0164 0.0053

B 0.0006 0.0001 0.0006 0.0001
log(LSTAT) −0.2534 0.0227 −0.2521 0.0221

λ 0.9520 0.0315 0.9401 0.0342

Table 2: Point estimates of fixed effects and λ using INLA and MCMC.

R> rlambda <- seq(0.8, 0.99, length.out = 20)

R> fhyper <- list(prec = list(prior = "loggamma", param = c(0.001, 0.001),

+ initial = log(1), fixed = FALSE))

R> errorhyper <- list(prec = list(prior = "loggamma",

+ param = c(0.001, 0.001), initial = log(1), fixed = FALSE))

R> form2 <- log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + I(RM^2) +

+ AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT)

R> lerouxmodels <- mclapply(rlambda, function(lambda) {

+ leroux.inla(form2, d = as.data.frame(boston), W = bmspB,

+ lambda = lambda, fhyper = fhyper, improve = TRUE,

+ family = "gaussian", control.fixed = list(prec.intercept = 0.001,

+ prec = 0.001), control.family = list(hyper = errorhyper),

+ control.predictor = list(compute = TRUE),

+ control.compute = list(dic = TRUE, cpo = TRUE),

+ control.inla = list(print.joint.hyper = TRUE))

+ })

Following this, we need to combine the different models to obtain the final model by Bayesian
Model Averaging. We will take a uniform prior on ρ and set the third argument in the
following function to log(1) = 0. Note that another prior can be used here by giving the
log-density of the prior at the different values of ρ.

R> bmaleroux <- INLABMA(lerouxmodels, rlambda, 0, impacts = FALSE)

bmaleroux is similar to the object returned by inla() and it includes the posterior marginals
and summary statistics for λ in a list element named rho. This provides summary statistics
(mean, standard deviation and some quantiles) and the posterior marginal.

The same model can be fitted using package CARBayes (Lee 2013) as follows:
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Figure 7: Comparisson between the posterior marginals of several parameters in Leroux et
al.’s model and fitted values with INLA (red) and MCMC (black).

R> library("CARBayes")

R> lcarbayes <- S.CARleroux(form2, data = boston, W = boston.matB,

+ family = "gaussian", burnin = 1000, n.sample = 11000, thin = 5)

Table 2 shows point estimates and standard deviations of the fixed effects and parameter λ
(bottom line) in the model. It is clear that there are no significant differences between the
estimates computed with MCMC and our method. Furthermore, Figure 7 shows the marginal
distribution of λ and it shows how our estimate is very close to that provided by MCMC.
Figure 7 also shows a good agreement between the posterior means of the fitted values.

While writting this paper, Lee and Mitchell (2013) have come up with an alternative way
of fitting this model using R-INLA and a generic1 latent model. In general, the results
obtained for λ with our approach are very similar to the ones obtained with theirs for the
Boston housing data.

5.2. Spatial econometrics models

LeSage and Pace (2009) describe in detail a range of models used in spatial econometrics.
These models have been developed to make the dependence among the observed values yi
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explicit. First of all, spatial dependence can be assumed on the error term (SEM model), so
that we have a slightly different model:

y = α+ βX + u;u = ρWu+ ε (25)

Here the error term u is assumed to have spatial dependence. ρ is a parameter that controls
spatial autocorrelation, α is the intercept, X a design matrix of covariates and β a vector of
associated coefficients. ε is an error term which is Gaussian with zero mean and variance-
covariance matrix Σ. Here, Σ = σ2In with In being a n × n identity matrix and σ2 is the
variance of the error term.

The adjacency matrix W is often taken to be row-standardized (see, for example, Haining
2003) to ensure that ρ is in the interval (−1, 1). Also, when ρ is equal to zero there is no
spatial dependence.

This can be reformulated as
y = α+ βX + ε′ (26)

ε′ is now an error term with a Gaussian distribution with zero mean and variance-covariance
matrix Σ = σ2((In − ρW )(In − ρW>))−1. Note that this variance-covariance encodes spatial
dependence in a particular way and that this is often referred to as Simultaneous Autoregres-
sive (SAR) specification (see, for example, Cressie 1993).

Alternatively, autocorrelation can be modelled explicitly so that the variable response y de-
pends on itself. This is the Spatial Lag Model (SLM model) and it can be defined as follows:

y = α+ βX + ρWy + ε (27)

This model can be reformulated as

y = (In − ρW )−1(α+ βX) + ε′ (28)

where ε′ is a Gaussian term with zero mean and variance-covariance matrix with a SAR
specification.

In addition to the previous models, sometimes lagged covariates are added to include the
effects of neighboring covariates. This is known as Spatial Durbin Model (SDM) and it is
often expressed as

y = ρWy + α+ βX + γWX + ε (29)

which leads to
y = (In − ρW )−1(α+ βX + γWX) + ε′ (30)

Note that this is like our previous model in Equation 28 using an extended design matrix that
includes both X and WX.

These models cannot be fitted with R-INLA for two reasons. First of all, the SAR specification
is not implemented, so we cannot consider it for our error terms. Furthermore, it is not possible
to define a model where the linear predictor is multiplied by (In − ρW )−1.

Following Section 4, it should be noted that, for a fixed ρ, these models become standard linear
models with a particular (but known) design matrix for the fixed effects and a multivariate
Gaussian distribution for the error term with zero mean and variance-covariance matrix.

This model can be easily fitted using R-INLA for different values of ρ. Note that, according to
Haining (2003), ρ is constrained to be in the interval (1/λmin, 1/λmax), with λmin and λmax
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the minimum and maximum eigenvalues of the adjacency matrix W . For row standardized
adjacency matrices we have that λmax = 1 and then ρ is lower than 1. Furthermore, we are
often interested in positive spatial autocorrelation and, in practice, we will assume that ρ is
in the interval [0, 1).

Finally, we have considered here the Gaussian case, but it is very easy to extend this model
to consider other likelihoods. In particular, LeSage, Pace, Lam, Campanella, and Liu (2011)
describe a Spatial Probit model where the outcome is whether an event occurred. Hence, the
response and the linear predictors are linked via a probit function as follows:

yi =

{
1 if y∗i ≥ 0
0 if y∗i < 0

(31)

The previous approach can be used here as well. The same code will still work as we can
define a different family and link function to be used when calling inla().

Boston housing data

Here we revisit the Boston housing data to fit the three models on Spatial Econometrics
previously described. First of all, it is worth mentioning that each models needs a wrapper
function to be fitted for a given value of the spatial autocorrelation parameter ρ. These
wrapper functions are included in R package R-INLA.

All functions are based on the generic0 model available in R-INLA. This model implements
a multivariate Gaussian random effect with zero mean and precision matrix τQ. Once ρ is
fixed, Q is known and the model can be easily fitted with R-INLA for that value of ρ. We
repeat this procedure for different values of ρ to obtain a list of fitted models to be combined
later.

A simple wrapper function can be defined as follows for the SEM model:

R> semwr.inla <- function(formula, d, W, rho, ...) {

+ IrhoW <- diag(nrow(W)) - rho * W

+ IrhoW2 <- t(IrhoW) %*% IrhoW

+ environment(formula) <- environment()

+ formula <- update(formula, . ~ . + f(idx, model = "generic0",

+ Cmatrix = IrhoW2))

+ res <- inla(formula, data = d, ...)

+ res$logdet <- as.numeric(determinant(IrhoW2)$modulus)

+ res$mlik <- res$mlik + res$logdet/2

+ return(res)

+ }

In the previous code, the precision matrix IrhoW2 is created using the adjacency matrix and
the value of ρ and the generic0 model is added to the formula after the fixed effects. As
discussed with the Leroux model, the marginal log-likelihood π(y|ρ) (note that now we are
conditioning on ρ) is corrected by adding half the log-determinat of (In − ρW>)(In − ρW ).
Argument ... is used, again, to pass any other options to inla().

Similar wrapper functions can be written for the other models. The functions included in
package INLABMA are similar, but include further options, to improve fitting or compute
the impacts (see Bivand et al. 2014b, for details).
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Figure 8: Posterior marginal of the spatial autocorrelation parameter ρ for different spatial
econometrics models, Boston housing data.

This is used in the following example to compute the fitted models for the SEM model. Note
that here zero.variance is used to set to zero the additional error term which is added by
default by R-INLA. Also, the adjacency matrix is taken from the data provided in the boston
data set.

R> zero.variance <- list(prec = list(initial = 25, fixed = TRUE))

R> boston.mat <- nb2mat(bostonadj)

R> bmsp <- as(boston.mat, "CsparseMatrix")

R> boston$idx <- 1:nrow(boston)

R> fform <- log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + I(RM^2) +

+ AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT)

Next, we define a fine grid to give values to ρ and compute the different models under these
values. Again, we have used mclapply to speed up computations.

R> rrho1 <- seq(0.5, 0.9, len = 20)

R> semmodels <- mclapply(rrho1, function(rho) {

+ sem.inla(fform, d = as.data.frame(boston), W = bmsp, rho = rho,

+ family = "gaussian", impacts = FALSE,

+ control.family = list(hyper = zero.variance),

+ control.predictor = list(compute = TRUE),

+ control.compute = list(dic = TRUE, cpo = TRUE),

+ control.inla = list(print.joint.hyper = TRUE))

+ })

Following this, we need to combine the different models to obtain the final model by Bayesian
model averaging. As in the example using the Leroux model, we will take a uniform prior on
ρ and set the third argument in the following function to log(1) = 0.

R> bmasem <- INLABMA(semmodels, rrho1, 0, impacts = FALSE)

bmasem is similar to the object returned by inla() and it includes the posterior marginals
and summary statistics for ρ.
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SLM and SDM models can be fitted using similar code. In the case of the SLM, first we
compute the design matrix (of the fixed effects) to be used later when fitting the models.
This will speed up the computations.

R> mmatrix <- model.matrix(fform, as.data.frame(boston))

R> rrho2 <- seq(0.3, 0.6, len = 20)

R> slmmodels <- mclapply(rrho2, function(rho) {

+ slm.inla(form, d = as.data.frame(boston), W = bmsp, rho = rho,

+ mmatrix = mmatrix, family = "gaussian", impacts = TRUE,

+ control.family = list(hyper = zero.variance),

+ control.predictor = list(compute = TRUE),

+ control.compute = list(dic = TRUE, cpo = TRUE),

+ control.inla = list(print.joint.hyper = TRUE))

+ })

R> bmaslm <- INLABMA(slmmodels, rrho2, 0, impacts = FALSE)

In the case of the SDM, it is very helpful to compute X and WX beforehand to reduce
computation time, as this is common to all the fitted models regardless of the value of ρ. This
can be later passed to wrapper function sdm.inla.

R> mmW <- bmsp %*% mmatrix[, -1]

R> mmatrixsdm <- cbind(mmatrix, as.matrix(mmW))

R> rrho3 <- seq(0.4, 0.7, len = 20)

R> sdmmodels <- mclapply(rrho3, function(rho) {

+ sdm.inla(form, d = as.data.frame(boston), W = bmsp, rho = rho,

+ mmatrix = mmatrixsdm, family = "gaussian", impacts = TRUE,

+ control.family = list(hyper = zero.variance),

+ control.predictor = list(compute = TRUE),

+ control.compute = list(dic = TRUE, cpo = TRUE),

+ control.inla = list(print.joint.hyper = TRUE))

+ })

R> bmasdm <- INLABMA(sdmmodels, rrho3, 0, impacts = FALSE)

As we have seen in the previous examples, combining the different values for the different
values of ρ provides accurate estimates of the posterior marginals for the model parameters.
The estimates of the marginals of ρ can be found in Figure 8.

6. Discussion

The integrated nested Laplace approximation has provided a new paradigm to model fitting in
Bayesian analysis. By focusing on the marginals and providing an interesting computational
approach, it has become a reasonable and faster alternative to MCMC. Furthermore, the
R-INLA package makes model fitting in R a very simple task. Although R-INLA implements
some key models, there are some others that have not been implemented yet. In addition, it
is not easy to implement completely new models within R-INLA. Latent mixture models are
an important example of models that cannot be fitted with R-INLA.
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In this paper we have shown an innovative approach to model fitting with INLA and R-INLA
which increases the number of latent models that can be fitted with INLA. We have been
able to do so by fitting conditional models on some model parameters and combining the
resulting models using simple methods for Bayesian model averaging. We have considered
the case in which conditioning is carried out on a single parameter but our approach can be
easily extended to the case of more than one parameter.

Given that the different models can be run in parallel, this is not a real computational burden.
In our examples, 20 models seemed to be enough to obtain good approximations. Implement-
ing new models is very simple and the wrapper functions included in the examples and the
INLABMA package provide templates to start with.

Other computationally efficient approaches for Bayesian inference on spatial models include,
for example, RStan (Stan Development Team 2013). It provides an efficient MCMC algorithm
and provides a good number of options for Gaussian processes which can be used to implement
some of the models described in this paper. It is worth mentioning that RStan models are
not based on R code but on C++ code that is compiled once the main model is defined.

We have shown that this is a practical approach using different examples in spatial statistics.
Similarly, complex spatio-temporal models could be fitted using a similar approach. However,
it should be noted that our approach can be extended to other areas.
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