
for Microsoft® SQL ServerTM
Functions Guide

Information in this document is subject to change without notice and does not represent a commitment on the part of the
vendor or its representatives. No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, without the written permission of MapInfo Corporation, One Global View,
Troy, New York 12180–8399.

©1992–2002 MapInfo Corporation. All rights reserved.

MapInfo Help ©1992–2002 MapInfo Corporation. All rights reserved.

MapInfo, MapInfo Professional, MapInfo logo, MapInfo GIS Extension, MapX, MapXsite, MapXtend, and SpatialWare are
registered trademarks, and MapInfo MapXtreme, StreetPro, and TargetPro are trademarks of MapInfo Corporation in the
United States.

Contact MapInfo Corporation on the Internet at: http://www.mapinfo.com.

HyperHelp copyright© Bristol Technology Inc. 1991, 1992, 1993

EHelp® is a registered trademark of Foundation Solutions, Inc., ©copyright, 1992, 1993.

Products named herein may be trademarks of their respective manufactures and are hereby recognized. Trademarked names
are used editorially, to the benefit of the trademark owner, with no intent to infringe on the trademark.

This documentation reflects the contributions of almost all of the women and men who work for MapInfo Corporation. It was
specifically produced by Ursula Toelke, with the help of Anne Thorne, Michael Berner, Marie Costa, Colleen Cox, Juliette
Funiciello, Lindsay Guttshall, Ed McElroy, Max Morton, Gayle Patenaude, Dianne Ritter, and Larry Strianese. These
members of the Documentation Department are indebted to MapInfo’s Quality Assurance Department and, of course, to all
the members of the Product Development (Toronto SpatialWare division) team that engineered this project.

MapInfo welcomes your comments and suggestions.

MapInfo Professional for SQL Server

June 2002

MapInfo Corporate Headquarters: MapInfo Europe Headquarters: Germany:

Voice: (518) 285-6000 Voice: +44 (0)1753.848.200 Voice: +49 (0)6142-203-400

Fax: (518) 285-6060 Fax: +44 (0)1753.621.140 Fax: +49 (0)6142-203-444

Sales Info Hotline: (800) 327-8627 email: uk@mapinfo.com email:germany@mapinfo.com

US Government Sales: (800) 619-2333

Technical Support Hotline: (518) 285-7283
Technical Support Fax: (518) 285-6080

Toll-free telephone support is available in the U.S. and Canada. Contact your
MapInfo sales representative for details. For international customers, please use
the Technical Support Fax number.

Table of Contents

About Functions. 3
Conventions . 4
Open GIS Consortium (OGC) . 5
Filter Tolerance . 5
Data Tolerance . 5

Aggregate Functions . 7
Function Descriptions . 8

Cast Functions . 13
Function Descriptions . 14

Constructor Functions. 17
Function Descriptions . 18
Overview . 18
Constructor Formats . 19
The ST_Spatial Constructor Function. 19
Geometry String Formats . 21

Coordinate Functions . 37
Function Descriptions . 38

General Functions . 41
Function Descriptions . 42

Measurement Functions . 45
Function Descriptions . 46

Observer Functions . 61
Function Descriptions . 62

Spatial Functions . 93
Function Descriptions . 94
Transformation Calculation . 131

Table of Contents
Spatial Predicates . 133
Function Descriptions. 134

Using Coordinate Systems . 161
Performing Coordinate Transformations . 162
OGC Well-Known Text . 163

Coordinate Transformation Reference Tables 167
Projections . 168
Spheroids/Ellipsoids . 169
Coordinate Units . 170
Datums . 170
2 MI Pro for SQL Server/Functions Guide

Chapter

➤ Conventions

➤ Open GIS Consortium
(OGC)

➤ Filter Tolerance

➤ Data Tolerance

1
 About Functions

Spatial functions allow you to analyze and manipulate
spatial data. They are grouped into nine categories.

All functions have either an HG_ prefix or ST_ prefix. The
ST_ prefix indicates that the function or geometry
representation is defined according to the international
standard ISO/IEC SQL/MM. The HG_ prefix indicates that
the function or geometry representation is an enhancement
to the standard.

About Functions
Overview
• Aggregate Functions

Work across rows in a group and return a single-row result.

• Cast Functions
Transform data from one format to another.

• Constructor Functions
Create geometry using the ST_Spatial function (described under Geometry Creation).

• Coordinate Functions
Applied to work with coordinate system information.

• General Functions
Perform operations, make queries, or change settings.

• Measurement Functions
Perform calculations on geometries to find a measurable characteristic, such as length,
slope, area, or height.

• Observer Functions
Return numbers, objects, or conditions from within a geometry.

• Spatial Functions
Perform operations on geometries to create new geometries.

• Spatial Predicates
Analyze geometries to see if they meet specific conditions. These functions usually
return TRUE or FALSE (1 or 0) values and are generally used within a WHERE clause
(e.g. find overlapping geometries).

Conventions
The following formatting cues are used in this document:

• Code samples, filenames, and URLs are set in a monospaced font.
• Notes are identified by the word "Note" in bold type.

• Bulleted lists present options and features.

• Numbered steps indicate procedures.

• Toolbutton icons are generally shown with procedure steps.

• Menu levels are separated by the greater than (>) sign.

• Text for you to type in is set in italics.
4 MI Pro for SQL Server/Functions Guide

About Functions
Open GIS Consortium (OGC)
The Open GIS Consortium, Inc. (OGC) defines itself as "a unique membership organization
dedicated to the development of open system approaches to geoprocessing." They are
developing the OpenGIS® Simple Features Specification For SQL. It is currently at version 1.1.
Documentation is available at the Open GIS Consortium web site (http://www.opengis.org).
SpatialWare for SQL Server follows the OGC Standards. It supports and properly defines
geometry and its components.

Filter Tolerance
Filtering is done by setting the third parameter to the ST_Buffer function (if you do not want
to use filtering you would set it to null) or by calling the HG_Filter function:

ST_Buffer(sw_geometry, double precision, double precision)

HG_Filter(sw_geometry, double precision)

Filtering reduces the number of points that represent a spatial object. If an object is used as
input to other functions, like ST_Overlap, reducing its level of detail improves processing
time.

 Note: Filter tolerance is not the same as data tolerance.

Data Tolerance
SpatialWare functions use a default data tolerance of 1.0 e-10 database units.

Points falling within the tolerance value of one another are considered to occupy the same
location, as in the diagram below:

Tolerance applies to all aspects of spatial analysis.

Data Tolerance

These two points are
within tolerance of
each other.

tolerance
MI Pro for SQL Server/Functions Guide 5

Chapter

➤ Function Descriptions

2
 Aggregate Functions

Spatial Aggregate functions work across rows in a group.
An aggregate function returns a single-row result of type
Spatial Blob. Aggregate functions take as input one or more
spatial objects of type ST_Spatial and return a single spatial
object.

Aggregate Functions
Function Descriptions
Aggregate functions include:

HG_Aggspatial
HG_Aggspatial returns a spatial object that contains the geometries from the spatial objects in
a group.

Given the following group of spatial values:

• 'point(1,2)'

• 'polyline(list{point1,2), point(3,2)})'

• 'box(1,2,3,2)'

• 'point(7,5)'

HG_Aggspatial returns:

st_spatial(list{point(1,2), polyline(list{point(1,2), point(3,2)}), box(1,2,3,2), point(7,5)})'

Syntax
HG_Aggspatial(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_Aggunion returns an ST_Spatial.

Example
exec sp_spatial_query ’
 select hg_aggunion(flood100.sw_geometry)
 from flood100;
’

HG_Aggspatial
HG_Aggunion
HG_Aggintersection
HG_Aggconvex_Hull
HG_Bounding_Box
8 MI Pro for SQL Server/Functions Guide

Aggregate Functions
HG_Aggunion
HG_Aggunion returns the union of the spatial objects in the group.

HG_Aggunion returns the union, see also HG_Union on page 120, of each ST_Spatial value in
the group. For a group of four ST_Spatial values (a, b, c, d), HG_Aggunion returns the
equivalent to:

hg_union(hg_union(hg_union(hg_union(a, b), c), d)

HG_Union
The following diagram shows the behavior of HG_Union with the basic shape types. The right
side of the arrow is the return object. 'Line' represents all Curve objects: ST_CircularArc,
ST_Polyline, HG_Curve, and HG_Circle. Collections of objects follow these basic examples.

 Syntax
HG_Aggunion(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_Aggunion returns an ST_Spatial.

HG_Union Behavior

Point/Point
1
2

1

Point/Line

Point/Polygon

Line/Polygon

Polygon/Polygon

Line/Line
MI Pro for SQL Server/Functions Guide 9

Aggregate Functions
Example
exec sp_spatial_query ’
 select hg_aggunion(flood100.sw_geometry)
 from flood100;
’

HG_Aggintersection
HG_Aggintersection returns the intersection of the spatial objects in the group.
HG_Aggintersection calls HG_Intersection, but is used for groups of ST_Spatials. For a group
of four ST_Spatial values (a, b, c, d), HG_Aggintersection returns the equivalent to:

hg_intersection(hg_intersection(hg_intersection(a, b), c), d)

Syntax
HG_Aggintersection(spatial_obj)

spatial_obj is an ST_Spatial

Return Type
HG_Aggintersection returns an ST_Spatial. If there is no intersection of the spatial objects in
this group, an empty geometry is returned.

Example
exec sp_spatial_query ’
 select hg_aggintersection(drain.sw_geometry)
 from drain;
’

HG_Aggconvex_Hull
HG_Aggconvex_Hull returns the convex hull for the group of spatial objects.
10 MI Pro for SQL Server/Functions Guide

Aggregate Functions
Syntax
HG_Aggconvex_Hull(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_Aggconvex_Hull returns an ST_Spatial.

Example
exec sp_spatial_query ’
 select hg_aggconvex_hull(pubbldg.sw_geometry)
 from pubbldg;
’

HG_Bounding_Box
HG_Bounding_Box returns the bounding box for the group of spatial objects. This is the
minimum enclosing rectangle (MER) around all ST_Spatial values in a group.

Input Convex Hull Operation Output

Input Convex Hull Operation Output
MI Pro for SQL Server/Functions Guide 11

Aggregate Functions
Syntax
HG_Bounding_Box(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_Bounding_Box returns an ST_Spatial.

Example
exec sp_spatial_query ’
 select hg_bounding_box(pubbldg.sw_geometry)
 from pubbldg;
’

12 MI Pro for SQL Server/Functions Guide

Chapter

➤ Function Descriptions

3
 Cast Functions

Cast functions transform data from one format to another.

These functions follow the OGC standards, please see
Open GIS Consortium (OGC) on page 5.

Cast Functions
Function Descriptions
Cast functions include:

HG_AsBinary
The HG_AsBinary function generates an OGC well-known binary from SpatialWare
geometry.

Syntax
HG_AsBinary(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_AsBinary returns an OGC well-known binary.

Example
The following example generates a temporary table called tmpbinary. This table contains the
OGC well-known binary generated by HG_AsBinary from SpatialWare geometry.

exec sp_spatial_query '

 select HG_AsBinary(sw_geometry) as ogcbinary into tmpbinary

 from parcel

'

HG_AsText
The HG_AsText function generates OGC well-known text from SpatialWare geometry.

Syntax
HG_AsText(spatial_obj)

spatial_obj is an ST_Spatial.

HG_AsBinary
HG_AsText
HG_GeometryFromBinary
HG_GeometryFromText
14 MI Pro for SQL Server/Functions Guide

Cast Functions
Return
HG_AsText returns an OGC well-known text.

Example
The following example generates a temporary table called tmptxt. This table contains the OGC
well-known text generated by HG_AsText from SpatialWare geometry.

exec sp_spatial_query '
 select HG_AsText(sw_geometry) as ogctxt into tmptxt
 from parcel
'

HG_GeometryFromBinary
The HG_GeometryFromBinary function interprets an OGC well-known binary and creates a
SpatialWare geometry from it.

Syntax
HG_GeometryFromBinary(ogcbinary)

ogcbinary is an OGC well-known binary.

Return Type
HG_GeometryFromBinary returns an ST_Spatial.

Example
The following example queries a temporary table called tmpbinary. This table contains OGC
well-known binaries generated by HG_AsBinary from SpatialWare geometry. Please refer to
the description for HG_AsBinary.

exec sp_spatial_query '
 select HG_GetString(HG_GeometryFromBinary(ogcbinary))
 from tmpbinary
'

HG_GeometryFromText
The HG_GeometryFromText function interprets an OGC well-known text string and creates a
SpatialWare geometry from it.
MI Pro for SQL Server/Functions Guide 15

Cast Functions
Syntax
HG_GeometryFromText(ogctext)

ogctext is an OGC well-known text string passed from a table.

Return Type
HG_GeometryFromText returns an ST_Spatial.

Example
The following example queries a temporary table called tmptxt. This table contains OGC
well-known text generated by HG_AsText from SpatialWare geometry. Please refer to the
description for HG_AsText.

exec sp_spatial_query '
 select HG_GetString(HG_GeometryFromText(ogctxt))
 from tmptxt
'

16 MI Pro for SQL Server/Functions Guide

Chapter

➤ Overview

➤ Constructor Formats

➤ The ST_Spatial Constructor
Function

➤ Geometry String Formats

4
 Constructor Functions

This chapter describes how to construct geometry using
SpatialWare’s Constructor functions and predefined string
formats. The resulting geometry is in the expected format
used by SpatialWare’s functions.

Constructor Functions
Function Descriptions
Geometry collections, a geometry comprised of multiple geometry strings, are also possible.

They can be created using the ST_Spatial function.

Overview
Constructor functions provide a simple interface through with you can create basic
geometries, such as points, polygons, and circles. All constructor functions return
SW_GEOMETRY.

There are geometry-specific constructor functions such as HG_Circle that create basic
geometries, and a more general constructor function, ST_Spatial, to create more complex
geometries.

You will notice that some constructor functions have the same name as the geometry string
format that they create: HG_Circle, ST_Point, and ST_Polyline (for a description of these three
geometry string formats (refer to The ST_Spatial Constructor Function on page 19). These
constructor functions are provided as a shortcut for creating some geometry types.You could
alternately create these geometry strings using the ST_Spatial constructor function.

Examples use the spatial table called testcon. Refer to the Concepts section for information on
data definition for a description of how to create a spatial table.

Geometry String Formats
HG_Box
HG_Circle – Two Points
HG_Circle – Center Point and Radius
HG_Circle – x, y, and Radius Values
HG_Curve
HG_Triangle
HG_Quad
ST_CircularArc
ST_Path
ST_Point
ST_Polygon – Path of Lines
ST_Polygon – Centroid
ST_Polygon – Interior Boundaries
ST_Polygon – Interior Boundaries and Centroid
ST_Polyline

Constructor Formats
ST_Spatial
18 MI Pro for SQL Server/Functions Guide

Constructor Functions
Dimension
Geometry is three-dimensional if it uses the three-dimensional point construction. For
example:

ST_Spatial('ST_Polyline(LIST{
 ST_Point(1,3,5),
 ST_Point(10,6,9)
})')

Constructor Formats
Geometry-specific constructor functions provide a simplified interface through with you can
create basic geometries. Geometry Constructors include HG_Box, HG_Box_Points,
HG_Box_WH, HG_Circle, ST_Point, and ST_Polyline.

Constructor functions are shortcuts for creating geometry. Using the specific constructors can
cut down on errors and typing. Whether you use the ST_Spatial constructor or one of the
constructor functions, the internal representation will be the same.

The following is an example of the HG_Circle Constructor function. This example creates a
circle from x and y, and radius values:

insert into testcon(sw_member, sw_geometry) values(1,
 HG_Circle(1.1, 2.2, 5.0)
);

The sw_member column, in the above example, holds a unique integer key that is used for R-
tree indexing.

The ST_Spatial Constructor Function
The ST_Spatial Constructor function uses geometry string formats to generate geometry. The
following example uses the ST_Spatial constructor and the predefined string format for circle
to insert a circle geometry into a table called testcon:

insert into testcon(sw_member, sw_geometry) values(2,
 'ST_Spatial(
 HG_Circle(ST_Point(11.1,22.2),ST_Point(55.5,44.4))
)'
)

ST_Spatial is very versatile because more than one string format can be used to create a multi-
element geometry, such as a square with a square hole in it. The following example builds a
more complex geometry by using multiple string formats. For example, a geometry
containing a point and a circle:
MI Pro for SQL Server/Functions Guide 19

Constructor Functions
insert into testcon(sw_member, sw_geometry) values(3,
 'ST_Spatial(LIST{
 ST_Point(11.1,44.4),
 HG_Circle(ST_Point(11.1,22.2),ST_Point(55.55,44.4))
 })'
)

Refer to Geometry String Formats on page 21 for the string formats used with ST_Spatial.

ST_Spatial
The ST_Spatial function takes a textual description of the geometry and constructs a
SW_GEOMETRY from it. The textual description are in SpatialWare-SQL/MM format.

ST_Spatial generates geometry consisting of one or more elements. For a description of the
string formats, for example HG_Box and HG_CircularArc, refer to The ST_Spatial Constructor
Function on page 19.

Syntax
ST_Spatial(string)

string is a character string representing a geometry (refer to The ST_Spatial Constructor
Function on page 19.).

Return Type
ST_Spatial returns SW_GEOMETRY.

Example
The following example calls HG_Center_In, which returns a copy of an geometry, where all
polygons are replaced by the line-strings forming its boundary. The ST_Spatial constructor is
used to create a point geometry for input the HG_Center_In function.

exec sp_spatial_query '
 select HG_GetString(HG_Center_In(
 flood100.sw_geometry, ST_Spatial(''
 ST_Point(1753960.182000, 10698421.103000)
 '')
))
 from flood100
'

Note: HG_GetString has been added to the example so that it will return geometry in text

format.
20 MI Pro for SQL Server/Functions Guide

Constructor Functions
Geometry String Formats
This section describes predefined string formats available for creating geometry with the
ST_Spatial constructor function.

HG_Box
HG_Box is the string format of a four sided object. It takes four double precision numbers: x1,
y1, x2, and y2 as input. These parameters specify the lower left (x1, y1) and upper right
corners of a box (x2, y2).

String Format
'HG_Box(x1, y1, x2, y2)'

x1, y1 are double precision numbers representing the x and y values of a coordinate.

x2, y2 are double precision numbers representing the x and y values of a coordinate.

Constructor
The HG_Box syntax of the ST_Spatial constructor is:

ST_Spatial('HG_Box(x1, y1, x2, y2)')

Example
insert into testcon(sw_member, sw_geometry) values(
 20, 'ST_Spatial(HG_Box(1.1,2.2,3.3,4.4))'
)

HG_Circle – Two Points
HG_Circle is the string format of a circle. This syntax (syntax two of three) defines a circle by
specifying a center point and a point that lies on the circle, in that order.

HG_Circle

point1

point2
MI Pro for SQL Server/Functions Guide 21

Constructor Functions
HG_Circle generates a linear geometry – a circular path.

String Format
'HG_Circle(LIST{point1, point2})'

point1 is the string format of an ST_Point.

point2 is the string format of an ST_Point.

Constructor
The HG_Circle syntax of the ST_Spatial constructor is:

ST_Spatial('HG_Circle(LIST{point, point})')

Example
insert into testcon(sw_member, sw_geometry) values(
 21,
 'ST_Spatial(HG_Circle(LIST{
 ST_Point(11.11,22.22),
 ST_Point(55.55,44.44)
 }))'
)

Caveat
To generate a circular area, instead of a circular path, buffer around a point or create a
polygon from a circle. For example:

ST_Buffer(x,y,r)

ST_Spatial('ST_Polygon(HG_Circle(point,r))')

HG_Circle – Center Point and Radius
HG_Circle is the string format of a circle. This syntax (syntax one of three) defines a circle by
specifying a center point and radius value (x, y, and radius values).

HG_Circle

r

(x, y)
22 MI Pro for SQL Server/Functions Guide

Constructor Functions
HG_Circle generates a linear geometry – a circular path.

String Format
'HG_Circle(point, radius)'

point is the string format of an ST_Point.

radius is a double precision value.

Constructor
The HG_Circle syntax of the ST_Spatial constructor is:

ST_Spatial('HG_Circle(point, radius)')

Example
insert into testcon(sw_member, sw_geometry) values(
 22, 'ST_Spatial(HG_Circle(ST_Point(11.11,22.22), 10))'
)

Caveat
To generate a circular area, instead of a circular path, buffer around a point or create a
polygon from a circle. For example:

ST_Buffer(x,y,r)

ST_Spatial('ST_Polygon(HG_Circle(point,r))')

HG_Circle – x, y, and Radius Values
HG_Circle is the string format of a circle. This syntax (syntax three of three) defines a circle by
specifying the x and y ordinates of the circle centre point, and a radius value.

HG_Circle generates a linear geometry – a circular path.

HG_Circle

r

(x, y)
MI Pro for SQL Server/Functions Guide 23

Constructor Functions
String Format
'HG_Circle(x, y, radius)'

x, y, are double precision values.

radius is a double precision value.

Constructor
The HG_Circle syntax of the ST_Spatial constructor is:

ST_Spatial('HG_Circle(x, y, radius)')

Example
insert into testcon(sw_member, sw_geometry) values(
 23, 'ST_Spatial(HG_Circle(11.11, 22.22, 10))'
)

Caveat
To generate a circular area, instead of a circular path, buffer around a point or create a
polygon from a circle. For example:

ST_Buffer(x,y,r)

ST_Spatial('ST_Polygon(HG_Circle(point,r))')

HG_Curve
HG_Curve is the string format of a curve. It is a smoothly curving line defined by a list of
points: a start point and an end point, with zero or more control points in between.

Optional start-tangent and end-tangent parameters give more control over the shape of the
line. As a result, HG_Curve can be defined in four ways:

1. A list of ST_Points.

2. A start-tangent and a list of ST_Points.

start end

control points

HG_Curve
24 MI Pro for SQL Server/Functions Guide

Constructor Functions
3. A list of ST_Points and an end-tangent.

4. A start-tangent, a list of ST_Points, and an end-tangent.

By setting the start and end tangents, you have more control over the shape of the curve.
Tangents are entered as double precision numbers representing a degree.

For brevity, only the fourth case will be detailed below. Just note that the start-tangent and
end-tangent parameters are optional. Default values will be assigned if they are left out.

String Format
'HG_Curve(start_tan, LIST{point, point, point,...}, end_tan)'

start_tan is a double precision number representing degrees. (This parameter is optional.)

LIST is an internal list mechanism.

point is the string format of an ST_Point.

end_tan is a double precision number representing degrees. (This parameter is optional.)

Constructor
The HG_Curve syntax of the ST_Spatial constructor is:

ST_Spatial('HG_Curve(start_tan, LIST{point,point,point},
end_tan)')

Example
insert into testcon(sw_member, sw_geometry) values(
 24,
 'ST_Spatial(HG_Curve(55.0, LIST{
 ST_Point(11.11,22.22),
 ST_Point(33.33,44.44),
 ST_Point(55.55,66.66)
 }, 40.0))'
)

start tangent end tangent

control points
MI Pro for SQL Server/Functions Guide 25

Constructor Functions
HG_Triangle
HG_Triangle is a triangular polygon, which is defined by three points.

String Format
'HG_Triangle(LIST{point1, point2, point3})'

point is the string format of ST_Point.

Constructor
The HG_Triangle syntax of the ST_Spatial constructor is:

ST_Spatial('HG_Triangle(LIST{point, point, point})')

Example
insert into testcon(sw_member, sw_geometry) values(
 25,
 'ST_Spatial(HG_Triangle(LIST{
 ST_Point(11.22, 33.44),
 ST_Point(55.66, 77.88),
 ST_Point(99.1010, 1111.1212),
 }))'
)

HG_Triangle

start
26 MI Pro for SQL Server/Functions Guide

Constructor Functions
HG_Quad
HG_Quad is a four-sided polygon of any shape, size, or rotation, which is defined by four
points.

String Format
'HG_Quad(LIST{point1, point2, point3, point4})'

point is the string format of ST_Point.

Constructor
The HG_Quad syntax of the ST_Spatial constructor is:

ST_Spatial('HG_Quad(LIST{point, point, point, point})')

Example
insert into testcon(sw_member, sw_geometry) values(
 26,
 'ST_Spatial(HG_Quad(LIST{
 ST_Point(11.22, 33.44),
 ST_Point(55.66, 77.88),
 ST_Point(99.1010, 1111.1212),
 ST_Point(1313.1414, 1515.1616)
 }))'
)

HG_Quad

start
MI Pro for SQL Server/Functions Guide 27

Constructor Functions
ST_CircularArc
ST_CircularArc is the string format of a curved line defined by three points. The first and last
points define the beginning and end, and the middle point determines the shape of the arc.

String Format
'ST_CircularArc(LIST{point1, point2, point3})'

point is the string format of ST_Point.

Constructor
The ST_CircularArc syntax of the ST_Spatial constructor is:

ST_Spatial('ST_CircularArc(LIST{point, point, point})')

Example
insert into testcon(sw_member, sw_geometry) values(27,
 'ST_Spatial(ST_CircularArc(LIST{
 ST_Point(11.11,22.22),
 ST_Point(33.33,44.44),
 ST_Point(55.55,66.66)
 }))'
)

ST_CircularArc

(x1,y1) (x3,y

(x2,yx)
28 MI Pro for SQL Server/Functions Guide

Constructor Functions
ST_Path
ST_Path is the string format defining a compound line made up of one or more curves. In this
case, a curve refers to a family of geometries: ST_Polyline, ST_CircularArc, HG_Circle, or
HG_Curve.

String Format
'ST_Path(LIST{object, object,...})'

LIST is an internal list mechanism.

object is the string format of any curve (ST_Polyline, ST_CircularArc, HG_Circle, or
HG_Curve).

Constructor
The ST_Path constructor is:

ST_Spatial('ST_Path(LIST{curve, curve})')

Example
insert into testcon(sw_member, sw_geometry) values(
 28,
 'ST_Spatial(ST_Path(LIST{
 ST_Polyline(LIST{
 ST_Point(11.11,22.22),ST_Point(33.33,44.44)
 }),
 ST_CircularArc(LIST{
 ST_Point(11.11,22.22),
 ST_Point(33.33,44.44),
 ST_Point(55.55,66.66)
 })

ST_Path

start

end

1 (polyline)

2 (polyline)
MI Pro for SQL Server/Functions Guide 29

Constructor Functions
 }))'
)

ST_Point
ST_Point is the string format of a point defined by its x, y, and optional z coordinates. The
optional z coordinate is used for points located in three-dimensional space. The coordinates
are double precision values.

String Format
'ST_Point(x, y)'

The string format of ST_Point in three dimensions is:

'ST_Point(x, y, z)'

x is a double precision number representing the point's x coordinate.

y is a double precision number representing the point's y coordinate.

z is a double precision number representing the point's z coordinate.

Constructor
The ST_Point syntax of the ST_Spatial constructor is:

ST_Spatial('ST_Point(x, y)')

ST_Spatial('ST_Point(x, y, z)')

Examples
The following example creates a two-dimensional point.

insert into testcon(sw_member, sw_geometry) values(
 29,

ST_Point

(x,y)

y

x

(x,y,z)

y

x

z

two-dimensional three-dimensional
30 MI Pro for SQL Server/Functions Guide

Constructor Functions
 'ST_Spatial(ST_Point(11.1,22.2))'
)

The following example creates a three-dimensional point.

insert into testcon(sw_member, sw_geometry) values(
 30,
 'ST_Spatial(ST_Point(11.1,22.2,44.4))'
)

ST_Polygon – Path of Lines
A polygon is the string format of a closed plane figure consisting of three or more straight
sides that connect three or more points. None of the sides are intersecting.

This syntax (syntax one of four) of an ST_Polygon defines an ST_Polygon with a path of lines
that creates an exterior boundary. The start and end points are the same.

String Format
'ST_Polygon(path)'

path is the string format of ST_Path.

Constructor
The ST_Spatial constructor for an ST_Polygon with an exterior boundary is:

ST_Spatial('ST_Polygon(path)')

Example
The following statement inserts an ST_Polygon into a table called testcon:

insert into testcon(sw_member, sw_geometry) values(
 31,
 'ST_Spatial(ST_Polygon(

ST_Polygon – syntax 1

y

x

start
end
MI Pro for SQL Server/Functions Guide 31

Constructor Functions
 ST_Path(LIST{
 ST_Point(1.2,1.0),
 ST_Point(6.4,1.6),
 ST_Point(6.4,2.9),
 ST_Point(5.0,4.2),
 ST_Point(2.1,4.0),
 ST_Point(1.2,1.0)
 })
))'

)

ST_Polygon – Centroid
A polygon is the string format of a closed plane figure consisting of three or more straight
sides that connect three or more points. None of the sides are intersecting.

This syntax defines a polygon with a centroid. The centroid is the geometric center point of the
polygon.

String Format
'ST_Polygon(path, point)'

path is the string format of ST_Path.

point is the string format of ST_Point.

Constructor
The ST_Spatial constructor for an ST_Polygon with an exterior boundary is:

ST_Spatial('ST_Polygon(path, point)')

ST_Polygon – syntax 2

y

x

start
end

(x,y)
32 MI Pro for SQL Server/Functions Guide

Constructor Functions
Example
The following statement inserts an ST_Polygon with a centroid into a table called testcon:

insert into testcon(sw_member, sw_geometry) values(
 32,
 'ST_Spatial(ST_Polygon(
 ST_Path(LIST{
 ST_Point(1.2,1.0),
 ST_Point(6.4,1.6),
 ST_Point(6.4,2.9),
 ST_Point(5.0,4.2),
 ST_Point(2.1,4.0),
 ST_Point(1.2,1.0)
 }),
 ST_Point(3.7,2.6)
))'
)

ST_Polygon – Interior Boundaries
A polygon is the string format of a closed plane figure consisting of three or more straight
sides that connect three or more points. None of the sides are intersecting.

This syntax (syntax three of four) defines a polygon with an exterior boundary (a path) and a
list of interior boundaries (geometries). The resulting geometry is what is shaded in the below
example.

String Format
'ST_Polygon(path, LIST{object1, object2 ,...})'

path is the string format of ST_Path.

ST_Polygon – syntax 3

y

x

start
end
MI Pro for SQL Server/Functions Guide 33

Constructor Functions
object1, object2,... are geometries defining interior boundaries.

Constructor
The ST_Spatial constructor for an ST_Polygon with an exterior boundary and one or more
interior boundaries is:

ST_Spatial('ST_Polygon(path, LIST{object,object})')

Example
The following statement inserts an ST_Polygon with an exterior boundary and two interior
boundaries into a table called testcon:

insert into testcon(sw_member, sw_geometry) values(
 33,
 'ST_Spatial(ST_Polygon(
 ST_Path(LIST{
 ST_Point(1.2,1.0),
 ST_Point(6.4,1.6),
 ST_Point(6.4,2.9),
 ST_Point(5.0,4.2),
 ST_Point(2.1,4.0),
 ST_Point(1.2,1.0)
 }),
 LIST{
 HG_Circle(ST_Point(3.0,1.9),ST_Point(3.2,1.9)),
 HG_Circle(ST_Point(4.6,3.7),ST_Point(5.0,3.7))
 }
))'
)

ST_Polygon – Interior Boundaries and Centroid
A polygon is the string format of a closed plane figure consisting of three or more straight
sides that connect three or more points. None of the sides are intersecting.

This syntax (syntax four of four) defines a polygon using all possible elements: an exterior
boundary (path), a list of interior boundaries (geometries), and a centroid.
34 MI Pro for SQL Server/Functions Guide

Constructor Functions
String Format
'ST_Polygon(path, LIST{object1, object2, ...}, point)'

path is the string format of ST_Path.

object1, object2,... are geometries defining interior boundaries.

point is the string format of ST_Point.

Constructor
The ST_Spatial constructor for a polygon with an exterior boundary and one or more interior
boundaries is:

ST_Spatial('ST_Polygon(path, LIST{object,object}, point)')

Example
The following statement inserts an ST_Polygon with an exterior boundary, two interior
boundaries, and a centroid into the table testcon:

insert into testcon(sw_member, sw_geometry) values(
 34,
 'ST_Spatial(ST_Polygon(
 ST_Path(LIST{
 ST_Point(1.2,1.0),
 ST_Point(6.4,1.6),
 ST_Point(6.4,2.9),
 ST_Point(5.0,4.2),
 ST_Point(2.1,4.0),
 ST_Point(1.2,1.0)}
),
 LIST{
 HG_Circle(ST_Point(3.0,1.9),ST_Point(3.2,1.9)),
 HG_Circle(ST_Point(4.6,3.7),ST_Point(5.0,3.7))

ST_Polygon – syntax 4

y

x

start
end

(x,y)
MI Pro for SQL Server/Functions Guide 35

Constructor Functions
 },
 ST_Point(3.7,2.6)
))'
)

ST_Polyline
ST_Polyline is the string format of defining one or more two-point line segments positioned
end to end. The line can be of any shape.

String Format
'ST_Polyline(LIST{point1, point2,...})'

point1,point2,... are string formats of ST_Point.

Constructor
The ST_Polyline constructor takes a list as an argument.

ST_Spatial('ST_Polyline(LIST{point, point})')

Example
The following example creates a two-dimensional polyline.

insert into testcon(sw_member, sw_geometry) values(
 35,
 'ST_Spatial(ST_Polyline(LIST{
 ST_Point(11.11,22.22),
 ST_Point(33.33,44.44)
 }))'
)

ST_Polyline

two-point line many two-point lines
36 MI Pro for SQL Server/Functions Guide

Chapter

➤ Function Descriptions

5
 Coordinate Functions

Coordinate functions are applied to transform between
coordinate systems.

Coordinate Functions
Function Descriptions
For information about how SpatialWare handles coordinate systems, please refer to the
chapter on coordinate systems.

Coordinate functions include:

HG_CSTransform
HG_CSTransform is a coordinate transformation function. Given a geometry, the description
of the coordinate system that it is in, and the target coordinate system, HG_CSTransform
performs a transformation. The source and destination coordinate systems are described by
the OGC well-known text strings.

The master..HG_SpatialRef table (located in the Master database) contains the well-known
text strings for supported coordinate systems.

Coordinate system information is not stored in the system. You must know what coordinate
system your data is stored in when working with coordinate systems.

For more information, refer to the chapter on Coordinate Systems.

Syntax
HG_CSTransform(spatial_obj, from_cs, to_cs)

spatial_obj is the spatial object being transformed, an ST_Spatial.

from_cs is the coordinate system to transform from a string.

to_cs is the coordinate system to transfer to a string.

Return Type
HG_CSTransform returns an ST_Spatial.

Example
exec sp_spatial_query '
 select HG_GetString(HG_CSTransform(
 a.sw_geometry, b.srtext, c.srtext
))

HG_CSTransform
38 MI Pro for SQL Server/Functions Guide

Coordinate Functions
 from world a, master..hg_spatialref b,
 master..hg_spatialref c
 where b.cs_name = ''Longitude / Latitude''
 and c.cs_name = ''Robinson''
'

Coordinate systems are specified by the OGC standard well-known text representation. The
well- known text strings for the coordinate systems are available in the table
master..HG_SpatialRef (in the Master database). This example assumes the existence of a table
called spotelev with geometries in 'Texas 4203, Central Zone (1983, US Survey feet)'.
MI Pro for SQL Server/Functions Guide 39

Chapter

➤ Function Descriptions

6
 General Functions

General functions perform operations, make queries, or
change settings.

General Functions
Function Descriptions
General functions include:

HG_GetString
HG_GetString returns the text representation of a geometry.

A select statement on a column of type ST_Spatial returns a non-text representation of a
geometry; HG_GetString is used in a select statement to return the text representation of a
selected ST_Spatial value. An ST_Spatial type is the internal, non-text representation of a
spatial object.

Syntax
HG_GetString(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_GetString returns a text string.

Examples
This example returns all geometries in the lake table.

exec sp_spatial_query '
 select HG_GetString(sw_geometry)
 from lake
'

This example returns buffers for every geometry in the lake table.

exec sp_spatial_query '
 select sw_member, HG_GetString(
 ST_Buffer(sw_geometry, 66.0, 1.0)
)
 from lake
'

HG_GetString
HG_Morph_Out

HG_Version
42 MI Pro for SQL Server/Functions Guide

General Functions
HG_Morph_Out
HG_Morph_Out is used to transfer data from a SpatialWare server to a MapInfo client, in
MapInfo binary format.

Syntax
HG_Morph_Out(spatial_obj)

spatial_obj is any ST_Spatial.

Return Type
HG_Morph_Out returns the input ST_Spatial transformed to MapInfo format.

Example
This example returns all the geometries in the lake table in MapInfo binary format.

exec sp_spatial_query ’
 select HG_Morph_Out(sw_geometry)
 from lake
’

HG_Version
HG_Version returns the current version of SpatialWare as a text string (i.e., '4.5').

Syntax
HG_Version()

No input is required.

Return Type
HG_Version returns an text string.

Examples
exec sp_spatial_query '
 select HG_Version() from mapinfo.mapinfo_mapcatalog

'

MI Pro for SQL Server/Functions Guide 43

Chapter

➤ Function Descriptions

7
 Measurement Functions

Measurement functions perform calculations on
geometries to find a measurable characteristic, such as
length, slope, area, or height.

Measurement Functions
Function Descriptions
Measurement functions include:

HG_Azimuth
HG_Azimuth returns the compass angle between the end and beginning points of a line.
HG_Azimuth finds the beginning and end points of the input line, performs an
HG_Azimuth_2pts operation on the two points (see page 47), and returns the result. The line
direction attribute determines which point is represented as beginning or end.

Line Direction Attribute
In addition to the global attributes, ST_Line contains a direction attribute that specifies the
directional property of the line. Line directions are FORWARD, REVERSE, or NULL.

The Direction of a line determines which points are considered the beginning and end points
Line direction is relevant for many functions in SpatialWare, such as HG_Slope. A line has 0 to
n points.

When a line’s direction is FORWARD of NULL, the beginning point is P0 and the end point is
Pn. When a line is REVERSE, the beginning point is Pn and the end point is P0.

Syntax
HG_Azimuth(spatial_obj)

HG_Azimuth
HG_Azimuth_2pts
HG_Distance
HG_Height
HG_Separation
HG_Slope
HG_Slope_2pts
HG_Slope_Avg
HG_Slope_Max

HG_Slope_Min
HG_SphericalDist
HG_Width
ST_Area
ST_Length
ST_Length_3D
ST_Perimeter
ST_Perimeter_3D

Line Direction

P1 P2 P3 PnP0
46 MI Pro for SQL Server/Functions Guide

Measurement Functions
spatial_obj is an ST_Spatial representing an ST_Polyline.

Return Type
HG_Azimuth returns a double precision number representing degrees.

Example
exec sp_spatial_query '
 select HG_Azimuth(rdpaved.sw_geometry)
 from rdpaved;
'

HG_Azimuth_2pts
HG_Azimuth_2pts returns the compass angle of the second point, relative to the first. The first
parameter becomes the origin point and the second parameter, the relative point. The origin point
is always represented as zero degrees North.

The direction of the angle calculation is clockwise from 0 to 360 degrees.

Syntax
HG_Azimuth_2pts(spatial_obj1, spatial_obj2)

spatial_obj1 must be an ST_Spatial point (the origin).

spatial_obj2 must be an ST_Spatial point (the relative point).

HG_Azimuth_2pts

270 o

0 o

90 o

180 o

origin point

relative point

N

S

W
E

y

x

MI Pro for SQL Server/Functions Guide 47

Measurement Functions
Return Type
HG_Azimuth_2pts returns a double precision number representing degrees or radians.

Example
exec sp_spatial_query '
 select HG_Azimuth_2pts(
 spotelev.sw_geometry,
 ST_Spatial(''
 ST_Point(1753960.182000, 10698421.103000,2784.945100)
 '')
) from spotelev
'

HG_Distance
HG_Distance returns the distance between two geometries in a two-dimensional plane.

Syntax
HG_Distance(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial.

Return Type
HG_Distance returns a double precision number.

Example
exec sp_spatial_query '
 select HG_Distance(
 sw_geometry,
 ST_Spatial(''ST_Point(1753960, 10698421)''))
 from spotelev
'

HG_Height
HG_Height returns the height of any ST_Spatial geometry. Height is measured as the change
in the y-value of the object's minimum enclosing box. The object can be either two or three
dimensional.
48 MI Pro for SQL Server/Functions Guide

Measurement Functions
Syntax
HG_Height(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_Height returns a double precision number.

Example
exec sp_spatial_query '
 select HG_Height(sw_geometry) from lake
'

HG_Separation
HG_Separation returns the distance between two points in a three-dimensional space.

Syntax
HG_Separation(spatial_obj1, spatial_obj2)

spatial_obj1 must be an ST_Spatial representing an ST_Point.

spatial_obj2 must be an ST_Spatial representing an ST_Point.

Return Type
HG_Separation returns a double precision number.

Null is returned if the points are specified as two-dimensional.

HG_Height

y

z
x

Height is change in y value.
MI Pro for SQL Server/Functions Guide 49

Measurement Functions
Example
exec sp_spatial_query '
 select HG_Separation(a.sw_geometry, b.sw_geometry)
 from spotelev a, spotelev b
'

HG_Slope
HG_Slope returns the slope of a three-dimensional line by finding the end points and
calculating the slope. Points falling between the end points are ignored.

Syntax
HG_Slope(spatial_obj)

spatial_obj is an ST_Spatial representing a three-dimensional ST_Polyline.

Return Type
HG_Slope returns an angle in degrees as a double precision number.

NULL is returned if a two-dimensional line is given as a parameter.

Usage
Use this function during a three-dimensional session.

Example
exec sp_spatial_query '
 select HG_Slope(sw_geometry) from testcon
'

HG_Slope_2pts
HG_Slope_2pts returns the slope between two points. Slope is directional, so the order of the
parameters is important. The first parameter is the beginning point and the second parameter
is the end point.

Syntax
HG_Slope_2pts(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial representing an ST_Point (the beginning point).

spatial_obj2 is an ST_Spatial representing an ST_Point (the end point).
50 MI Pro for SQL Server/Functions Guide

Measurement Functions
Return Type
HG_Slope_2pts returns an angle in degrees as a double precision number.

Example
exec sp_spatial_query '
 select HG_Slope_2pts(
 sw_geometry,
 ST_Spatial(''ST_Point(100.1, 100.2, 100.3)''))
 from spotelev where sw_member = 3
'

HG_Slope_Avg
HG_Slope_Avg returns the average slope of all two-point line segments within a line.

The function takes a line parameter and checks for points within the line. If there are points
within the line, then multiple line segments are created. The slope is determined for each
segment and then the average slope of all segments is calculated.

Syntax
HG_Slope_Avg(spatial_obj)

spatial_obj is an ST_Spatial representing a three-dimensional ST_Polyline.

Return Type
HG_Slope_Avg returns an angle in degrees as a double precision number.

NULL is returned if a two-dimensional line is given as a parameter.

Example
exec sp_spatial_query '
 select HG_Slope_Avg(sw_geometry) from testcon
 where sw_member = 3
'

HG_Slope_Avg

seg 1
seg 2 seg 3 seg 4

P1

P2
P3

P4
P5
MI Pro for SQL Server/Functions Guide 51

Measurement Functions
HG_Slope_Max
HG_Slope_Max returns the maximum slope of all two-point line segments within a line. The
function receives a line parameter and checks for points within the line. If there are points in
the line, then multiple line segments are created. The slope is determined for each segment
and the maximum slope is returned.

Syntax
HG_Slope_Max(spatial_obj)

spatial_obj is an ST_Spatial representing a three-dimensional ST_Polyline.

Return Type
HG_Slope_Max returns an angle in degrees as a double precision number.

NULL is returned if a two-dimensional line is given as a parameter.

Example
exec sp_spatial_query '
 select HG_Slope_Max(sw_geometry) from testcon
 where sw_member = 3
'

HG_Slope_Min
HG_Slope_Min returns the minimum slope of all two-point line segments within a line.

If there are points within the input line, then multiple line segments are created. The slope is
determined for each segment and the minimum of all slopes is returned.

HG_Slope_Max

seg 1
seg 2 seg 3 seg 4

P1

P2
P3

P4
P5
52 MI Pro for SQL Server/Functions Guide

Measurement Functions
Syntax
HG_Slope_Min(spatial_obj)

spatial_obj is an ST_Spatial representing a three-dimensional ST_Polyline.

Return Type
HG_Slope_Min returns an angle in degrees as a double precision number.

NULL is returned if a two-dimensional line is given as a parameter.

Example
exec sp_spatial_query '
 select HG_Slope_Min(sw_geometry) from testcon
 where sw_member =3
'

HG_SphericalDist
HG_SphericalDist returns the Spherical distance between two points. The distance calculated
is in Meters. This function is ideal for telecom users who have data that straddles UTM
boundaries.

If your application requires units other than meters it must convert the results. For example, to
find the Spherical distance between the cities of Toronto and Las Vegas in Kilometers, divide
the value returned by this function by 1000. A list of conversion constants is provided in
Appendix: Conversion Constants on page 181.

The input geometries are assumed to be in long/lat, in the same datum. If the geometries are
anything other than points, their centroids are used for the distance calculation.

Syntax
HG_SphericalDist(point1, point2)

HG_Slope_Min

seg 1
seg 2 seg 3 seg 4

P1

P2
P3

P4
P5
MI Pro for SQL Server/Functions Guide 53

Measurement Functions
point1 is an ST_Spatial representing an ST_Point in long/lat.

point2 is an ST_Spatial representing an ST_Point in long/lat.

Return Type
HG_SphericalDist returns a double precision number in Meters.

Example
This example is in the form of a script. It creates a table called na_cities and populates it with
point data representing cities: Toronto, Albany, and Las Vegas. A query is made to view the
input geometry by calling HG_GetString. The spherical distance between the cities is then
calculated using HG_SphericalDist. You may want to divide the result by 1000 to convert to
Kilometers.

create table na_cities (
 sw_member integer NOT NULL,
 city varchar(20),
 sw_geometry st_spatial
)

exec sp_sw_spatialize_column
 'dbo','na_cities','sw_geometry','sw_member',NULL

insert into na_cities values (1,
 'Toronto',
 'ST_Spatial(ST_Point(-79.412672,43.720834))'
)

insert into na_cities values (2,
 'Albany',
 'ST_Spatial(ST_Point(-73.799017, 42.66575))'
)

insert into na_cities values (3,
 'Las Vegas',
 'ST_Spatial(ST_Point(-115.222799160,36.205749990))'
)

exec sp_spatial_query '
 select city, HG_GetString(sw_geometry)
 from na_cities
'

exec sp_spatial_query '
 select a.city, b.city, HG_SphericalDist(
 a.sw_geometry, b.sw_geometry
) as dist
 from na_cities a, na_cities b
54 MI Pro for SQL Server/Functions Guide

Measurement Functions
 where a.city < b.city
'

exec sp_sw_despatialize_column
 'dbo','na_cities','sw_geometry','sw_member'

drop table na_cities

The last two lines drop the spatial table: the spatial column is despatialized and then the table
is dropped.

HG_Width
HG_Width returns the minimum enclosing rectangle of a geometry. Width is measured as the
change in the x-value of the object's minimum enclosing box. The object can be either two or
three dimensional.

Syntax
HG_Width(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_Width returns a double precision number.

Example
exec sp_spatial_query '
 select HG_Width(sw_geometry) from lake
'

HG_Width

y

z
x

Width is change in x value.
MI Pro for SQL Server/Functions Guide 55

Measurement Functions
ST_Area
ST_Area returns the surface area of polygon geometries; if the input geometry contains
entities other than polygons, ST_Area returns a NULL value.

Syntax
ST_Area(spatial_obj)

spatial_obj is an ST_Spatial representing a ST_Polygon.

Return Type
ST_Area returns a double precision number.

Example
exec sp_spatial_query '
 select ST_Area(sw_geometry) from lake
'

Caveat
There are some accuracy considerations when performing area calculations in the Longitude/
Latitude coordinate system.

All SpatialWare operators are designed to work in a Cartesian coordinate system. Any of the
SpatialWare projections when applied to define a coordinate system will expose a Cartesian
coordinate system.

There is however one exception, the Latitude/Longitude coordinate system may not be
treated as a Cartesian system. A unit of length, such as area or slope, in a Latitude/Longitude
system is undefined. Operators such as ST_Buffer and HG_Circle which accept arguments of
"unit" can not provide valid results on a Latitude/Longitude Coordinate System as the
operation is mathematically invalid.

Consider the example of the ST_Area function. The mathematically precise way to apply the
area function on a geometry stored in Latitude/Longitude coordinate system is to transform it
to a suitable coordinate system before applying the function. If you set your current projection
to an appropriate coordinate system, the geometry will be transformed to the projected space
before the area function is applied. The results will thus be mathematically precise.
56 MI Pro for SQL Server/Functions Guide

Measurement Functions
ST_Length
ST_Length calculates the length of two dimensional line geometries; if the input geometry
contains entities other than lines, ST_Length returns a NULL value.

For three-dimensional line geometries, use ST_Length_3D on page 57.

Syntax
ST_Length(spatial_obj)

spatial_obj is an ST_Spatial representing an ST_Polyline.

Return Type
ST_Length returns a double precision number.

Example
exec sp_spatial_query '
 select ST_Length(sw_geometry)
 from rdpaved
 where sw_member=3
'

ST_Length_3D
ST_Length_3D calculates the length of three dimensional line geometries; if the input
geometry contains entities other than lines, ST_Length_3D returns a NULL value. For two-
dimensional line geometries, use ST_Length on page 57.

Syntax
ST_Length_3D(spatial_obj)

spatial_obj is an ST_Spatial representing a three-dimensional ST_Polyline.

Return Type
ST_Length_3D returns a double precision number.

Usage
Use this function with three-dimensional geometry.
MI Pro for SQL Server/Functions Guide 57

Measurement Functions
Example
exec sp_spatial_query '
 select ST_Length_3D(sw_geometry) from testcon
'

ST_Perimeter
ST_Perimeter calculates the perimeter of two-dimensional polygon geometries; if the input
geometry contains entities other than polygons, ST_Perimeter returns a NULL value.

For three-dimensional objects, use ST_Perimeter_3D on page 58.

Syntax
ST_Perimeter(spatial_obj)

spatial_obj is an ST_Spatial representing an ST_Polygon.

Return Type
ST_Perimeter returns a double precision number.

Example
exec sp_spatial_query '
 select ST_Perimeter(sw_geometry) from lake
'

ST_Perimeter_3D
ST_Perimeter_3D calculates the perimeter of polygon geometries in three-dimensional space;
if the input geometry contains entities other than polygons, ST_Perimeter_3D returns a NULL
value. For two-dimensional objects, use ST_Perimeter on page 58.

Syntax
ST_Perimeter_3D(spatial_obj)

spatial_obj is an ST_Spatial representing a three-dimensional ST_Polygon.

Return Type
ST_Perimeter_3D returns a double precision number.
58 MI Pro for SQL Server/Functions Guide

Measurement Functions
Usage
Use this function with three-dimensional geometry.

Example
exec sp_spatial_query '
 select ST_Perimeter_3d(sw_geometry) from lake
'

MI Pro for SQL Server/Functions Guide 59

Chapter

➤ Function Descriptions

8
 Observer Functions

Spatial Observer functions return numbers, objects, or
conditions from within a geometry.

Observer Functions
Function Descriptions
Observer functions include:

HG_Begin_Point
HG_Begin_Point returns the start point of a line. NULL is returned if the input is not a line.

A line has 0 to n points.

Syntax
HG_Begin_Point(polyline)

polyline is an ST_Spatial representing an ST_Polyline.

Return Type
HG_Begin_Point returns an ST_Spatial representing an ST_Point.

HG_Begin_Point
HG_Cen_X
HG_Cen_Y
HG_Cen_Z
HG_Center_Point
HG_Corner
HG_Curve
HG_End_Arc_Rot
HG_End_Point
HG_End_Tangent
HG_End_Tangent_P
HG_Expanded
HG_Exterior_Path
HG_Extract_At
HG_GeometryN
HG_Interior_Path

HG_Llb_X
HG_Llb_Y
HG_Llb_Z
HG_Ncoords
HG_Ncurves
HG_Nitems
HG_Npaths
HG_Npoints
HG_Npolygons
HG_Nsubcurves
HG_Ori_Rotation
HG_Ori_X
HG_Ori_Y
HG_Ori_Z
HG_Point
HG_Pointdyn_Ori_X

HG_Pointdyn_Ori_Y
HG_Pointdyn_Rot
HG_Pointdyn_Xscale
HG_Pointdyn_Yscale
HG_PointN
HG_Radians
HG_Start_Arc_Rot
HG_Start_Tangent
HG_Start_Tangent_P
HG_Subcurve
HG_Urt_X
HG_Urt_Y
HG_Urt_Z
ST_X
ST_Y
ST_Z
62 MI Pro for SQL Server/Functions Guide

Observer Functions
Example
exec sp_spatial_query '
 select HG_GetString(HG_Begin_Point(sw_geometry))
 from rdpaved
'

Caveat
HG_GetString on page 42 has been added to the example so that it will return geometry in text
format.

HG_Cen_X
HG_Cen_X returns the x-value of an ST_Spatial's centroid. All ST_Spatials contain
information about their centroid: the weighted mathematical center of an ST_Spatial.

 Note: The centroid of an ST_Spatial is the weighted, mathematical center point of an
object. The x, y, and z coordinates are accessible. It is an ST_Point.

Syntax
HG_Cen_X(spatial_obj)

spatial_obj is any ST_Spatial.

Return Type
HG_Cen_X returns a double precision number.

Example
exec sp_spatial_query '
 select HG_Cen_X(sw_geometry)
 from lake
'

HG_Cen_Y
HG_Cen_Y returns the y-value of an ST_Spatial's centroid. All ST_Spatials contain
information about their centroid: the weighted mathematical center of an ST_Spatial.
MI Pro for SQL Server/Functions Guide 63

Observer Functions
 Note: The centroid of an ST_Spatial is the weighted, mathematical center point of an
object. The x, y, and z coordinates are accessible. It is an ST_Point.

Syntax
HG_Cen_Y(spatial_obj)

spatial_obj is any ST_Spatial.

Return Type
HG_Cen_Y returns a double precision number.

Example
exec sp_spatial_query '
 select HG_Cen_Y(sw_geometry)
 from lake
'

HG_Cen_Z
HG_Cen_Z returns the z-value of an ST_Spatial's centroid. All ST_Spatials contain
information about their centroid: the weighted mathematical center of an ST_Spatial.

 Note: The centroid of an ST_Spatial is the weighted, mathematical center point of an
object. The x, y, and z coordinates are accessible. It is an ST_Point.

Syntax
HG_Cen_Z(spatial_obj)

spatial_obj is any ST_Spatial.

Return Type
HG_Cen_Z returns a double precision number.

Example
exec sp_spatial_query '
 select HG_Cen_Z(sw_geometry)
 from lake
'

64 MI Pro for SQL Server/Functions Guide

Observer Functions
HG_Center_Point
HG_Center_Point returns the center point of an ST_CircularArc, or HG_Circle. The center
point is the center of an arc shape. In the case of an ST_CircularArc, it is an implied center.

Syntax
HG_Center_Point(spatial_obj)

spatial_obj is an ST_Spatial representing an ST_CircularArc, or HG_Circle.

Return Type
HG_Center_Point returns an ST_Spatial representing an ST_Point.

Example
exec sp_spatial_query '
 select HG_GetString(HG_Center_Point(sw_geometry))
 from testcon
 where HG_Is_Circle(sw_geometry)
'

Caveat
HG_GetString on page 42 has been added to the example so that it will return geometry in text
format.

HG_Corner
HG_Corner is a synonym for HG_Point. It returns a specific ST_Point from an ST_Curve.
ST_Curves contain zero to n ST_Points, stored sequentially in a LIST. The number parameter
in HG_Corner selects a particular ST_Point from that LIST.

HG_Center_Point

implied centercenter point
MI Pro for SQL Server/Functions Guide 65

Observer Functions
Syntax
HG_Corner(spatial_obj, number)

spatial_obj is an ST_Spatial representing an HG_Curve.

number is an integer representing the position of an object in a LIST.

Return Type
HG_Corner returns an ST_Spatial representing an ST_Point.

Example
exec sp_spatial_query '
 select HG_GetString(HG_Corner(a.sw_geometry, 3))
 from rdpaved
 where sw_member = 2
'

Caveat
HG_GetString on page 42 has been added to the example so that it will return geometry in text
format.

HG_Curve
HG_Curve returns a specific ST_Curve from an ST_Path. ST_Paths are composed of zero to n
ST_Curves, stored sequentially in a LIST. The number parameter sent to HG_Curve selects a
particular ST_Curve from that LIST.

Syntax
HG_Curve(spatial_obj, number)

spatial_obj is an ST_Spatial representing an ST_Path.

number is an integer representing the position of an object in a LIST.

Return Type
HG_Curve returns an ST_Spatial representing an HG_Curve.

Example
exec sp_spatial_query '
 select HG_GetString(HG_Curve(a.sw_geometry, 3))
66 MI Pro for SQL Server/Functions Guide

Observer Functions
 from testcon
'

Caveat
HG_GetString on page 42 has been added to the example so that it will return geometry in text
format.

HG_End_Arc_Rot
HG_End_Arc_Rot returns the ST_CircularArc's end angle in degrees: zero (0) degrees is the
positive X-axis, ninety (90) degrees is the positive Y-axis.

Refer also to the description for HG_Start_Arc_Rot on page 86.

Syntax
HG_End_Arc_Rot(spatial_obj)

spatial_obj is an ST_Spatial representing an ST_CircularArc.

Return Type
HG_End_Arc_Rot returns a real value.

Example
exec sp_spatial_query '
 select HG_End_Arc_Rot(sw_geometry)
 from lake
'

HG_End_Arc_Rot

215 o

arc start

arc end
270 o

0 o

90 o

180 o
MI Pro for SQL Server/Functions Guide 67

Observer Functions
HG_End_Point
HG_End_Point returns the end point of a line.

Syntax
HG_End_Point(polyline)

polyline is an ST_Spatial representing a ST_Polyline.

Return Type
HG_End_Point returns an ST_Spatial representing a ST_Point.

Example
exec sp_spatial_query '
 select HG_GetString(HG_End_Point(sw_geometry))
 from rdpaved
'

Caveat
HG_GetString has been added to the example so that it will return geometry in text format.

HG_End_Tangent
HG_End_Tangent returns the tangent of an HG_Curve's end point.

Syntax
HG_End_Tangent(spatial_obj)

spatial_obj is an ST_Spatial representing an HG_Curve.

Return Type
HG_End_Tangent returns a real value.

Example
exec sp_spatial_query '
 select HG_End_Tangent(sw_geometry)
 from testcon
 where HG_Is_HG_Curve(sw_geometry)
'

68 MI Pro for SQL Server/Functions Guide

Observer Functions
HG_End_Tangent_P
HG_End_Tangent_P returns an ST_Point on the tangent of an HG_Curve's end point.

Syntax
HG_End_Tangent_P(spatial_obj)

spatial_obj is an ST_Spatial representing an HG_Curve.

Return Type
HG_End_Tangent_P returns an ST_Spatial representing an ST_Point.

Example
exec sp_spatial_query '
 select HG_GetString(HG_End_Tangent_P(sw_geometry))
 from testcon
 where hg_is_hg_curve(sw_geometry)
'

Caveat
HG_GetString on page 42 has been added to the example so that it will return geometry in text
format.

HG_Expanded
HG_Expanded returns the point equivalent of an ST_Curve. For example, an ST_CircularArc
is defined by three points and an equation. Instead of three points, HG_Expanded returns 129
points. The default conversion rate is 128 points/180 degrees of curve.

Syntax
HG_Expanded(spatial_obj)

spatial_obj is an ST_Spatial representing an HG_Curve.

Return Type
HG_Expanded returns an ST_Spatial.

Example
exec sp_spatial_query '
 select HG_GetString(HG_Expanded(sw_geometry))
MI Pro for SQL Server/Functions Guide 69

Observer Functions
 from rdpaved
 where sw_member = 1
'

Caveat
HG_GetString on page 42 has been added to the example so that it will return geometry in text
format.

HG_Exterior_Path
HG_Exterior_Path returns the exterior boundary of a polygon, an ST_Polygon. ST_Polygons
have one exterior boundary and zero to n interior boundaries, defined by ST_Paths.

The input geometry must be a polygon, otherwise, HG_Exterior_Path returns NULL.

Syntax
HG_Exterior_Path(spatial_obj)

spatial_obj is an ST_Spatial representing a ST_Polygon.

Return Type
HG_Exterior_Path returns an ST_Spatial representing a ST_Path.

Example
exec sp_spatial_query '
 select HG_GetString(HG_Exterior_Path(sw_geometry))

 from lake
'

Caveat
HG_GetString on page 42 has been added to the example so that it will return geometry in text
format.

HG_Extract_At
HG_Extract_At returns the primitive at a given position in a SpatialObject. The position
argument can be between 0 and n-1 in a SpatialObject that has n primitives. The returned
value is an instance of ST_Spatial. This function is used for extracting individual primitives in
a multi-element geometry.
70 MI Pro for SQL Server/Functions Guide

Observer Functions
If the specified position is -1, then the whole SpatialObject is returned.

Syntax
HG_Extract_At(spatial_obj, ref_number)

spatial_obj is any ST_Spatial.

ref_number is an integer.

Return Type
HG_Extract_At returns an ST_Spatial.

Example
This example selects the first primitive of the SpatialObject whose sw_member is 1.

exec sp_spatial_query '
 select HG_GetString(HG_Extract_At(sw_geometry, 0))
 from rdpaved
 where sw_member = 1
'

Caveat
HG_GetString on page 42 has been added to the example so that it will return geometry in text
format.

HG_GeometryN
HG_GeometryN extracts the Nth geometry in a multi-element SW_GEOMETRY, where N is a
specified position. The index on HG_GeometryN is zero based. For example, zero (0) is used
for the first element and one (1) is used for the second element.

If the input number is greater than the number of points in the geometry, NULL is returned.

Syntax
HG_GeometryN(spatial_obj, position)

spatial_obj is an ST_Spatial.

position is an integer.

Return Type
HG_GeometryN returns an ST_Spatial.
MI Pro for SQL Server/Functions Guide 71

Observer Functions
Example
exec sp_spatial_query '
 select HG_GetString(HG_GeometryN(sw_geometry, 1))
 from rdpaved
 where sw_member = 7
'

Caveat
HG_GetString on page 42 has been added to the example so that it will return geometry in text
format.

HG_Interior_Path
HG_Interior_Path returns a specific interior boundary from a polygon, an ST_Polygon.
ST_Polygons have one exterior boundary and zero to n-1 interior boundaries, defined by
ST_Paths. The interior boundaries are stored sequentially in a LIST. The number parameter
that is sent to HG_Interior_Path selects a particular interior boundary from that LIST.

Syntax
HG_Interior_Path(spatial_obj, number)

spatial_obj is an ST_Spatial representing a ST_Polygon.

number is an integer representing the position of an object in a LIST that starts with zero (i.e., 0,
1, 2, ... n).

Return Type
HG_Interior_Path returns an ST_Spatial representing an ST_Path.

Example
This example creates a polygon with a hole in it in the testcon table:

insert into testcon (sw_member, sw_geometry) values (63,
 'ST_Spatial(ST_Polygon(
 HG_Box(0,0,5,5),
 ST_Path(LIST{
 ST_Polyline(LIST{
 ST_Point(1,1),
 ST_Point(2,2)
 }),
 ST_CircularArc(LIST{
72 MI Pro for SQL Server/Functions Guide

Observer Functions
 ST_Point(2,2),
 ST_Point(2,3),
 ST_Point(3,3)
 }),
 ST_Polyline(LIST{
 ST_Point(3,3),
 ST_Point(3,1),
 ST_Point(1,1)
 })
 })
))'
)

exec sp_spatial_query '
 select HG_GetString(HG_Interior_Path(sw_geometry, 0))
 from testcon
'

Caveat
HG_GetString on page 42 has been added to the example so that it will return geometry in text
format.

HG_Llb_X
HG_Llb_X returns the x-coordinate of the lower left corner of the minimum enclosing
rectangle for the geometry.

Syntax
HG_Llb_X(spatial_obj)

spatial_obj is an ST_Spatial representing a ST_Polygon.

Return Type
HG_Llb_X returns a double precision number.

Example
exec sp_spatial_query '
 select HG_Llb_X(sw_geometry)
 from lake
'

MI Pro for SQL Server/Functions Guide 73

Observer Functions
HG_Llb_Y
HG_Llb_Y returns the y-coordinate of the lower left corner of the minimum enclosing
rectangle for the geometry.

Syntax
HG_Llb_Y(spatial_obj)

spatial_obj is an ST_Spatial representing a ST_Polygon.

Return Type
HG_Llb_Y returns a double precision number.

Example
exec sp_spatial_query '
 select HG_Llb_Y(sw_geometry)
 from lake
'

HG_Llb_Z
HG_Llb_Z returns the z-coordinate of the lower left corner of the minimum enclosing
rectangle for the geometry.

Syntax
HG_Llb_Z(spatial_obj)

spatial_obj is an ST_Spatial representing a ST_Polygon.

Return Type
HG_Llb_Z returns a double precision number.

Example
exec sp_spatial_query '
 select HG_Llb_Z(sw_geometry)
 from lake
'

74 MI Pro for SQL Server/Functions Guide

Observer Functions
HG_Ncoords
HG_Ncoords returns the total number of points in an ST_Spatial, counting points embedded
in other geometry constructors (ST_GeometricPrimitives). If you want just the number of
ST_Points, use HG_Npoints on page 77.

Syntax
HG_Ncoords(spatial_obj)

spatial_obj is any ST_Spatial.

Return Type
HG_Ncoords returns an integer.

Example
exec sp_spatial_query '
 select HG_Ncoords(sw_geometry)
 from lake
'

HG_Ncurves
HG_Ncurves returns the number of ST_Curves in an ST_Spatial. The function does not count
embedded HG_Curves.

Syntax
HG_Ncurves(spatial_obj)

spatial_obj is any ST_Spatial.

Return Type
HG_Ncurves returns an integer.

Example
exec sp_spatial_query '
 select HG_Ncurves(sw_geometry)
 from rdpaved
 where sw_member < 7
'

MI Pro for SQL Server/Functions Guide 75

Observer Functions
select HG_Ncurves(sw_geometry)
from rdpaved
where sw_member < 7;

HG_Nitems
HG_Nitems returns the number of geometries in an ST_Spatial.

The function does not count embedded items.

Syntax
HG_Nitems(spatial_obj)

spatial_obj is any ST_Spatial.

Return Type
HG_Nitems returns an integer.

Example
exec sp_spatial_query '

 select HG_Nitems(sw_geometry)
 from lake
'

HG_Npaths
HG_Npaths returns the number of ST_Paths in an ST_Spatial. The function does not count
embedded ST_Paths.

Syntax
HG_Npaths(spatial_obj)

spatial_obj is any ST_Spatial.

Return Type
HG_Npaths returns an integer.

Example
exec sp_spatial_query '
 select HG_Npaths(sw_geometry)
76 MI Pro for SQL Server/Functions Guide

Observer Functions
 from lake
'

HG_Npoints
HG_Npoints returns the number of ST_Points in an ST_Spatial. The function does not count
embedded ST_Points.

Syntax
HG_Npoints(spatial_obj)

spatial_obj is any ST_Spatial.

Return Type
HG_Npoints returns an integer.

Example
exec sp_spatial_query '
 select HG_Npoints(sw_geometry)
 from spotelev
 where sw_member = 11
'

HG_Npolygons
HG_Npolygons returns the number of ST_Polygons in an ST_Spatial. The function does not
count embedded ST_Polygons.

Syntax
HG_Npolygons(spatial_obj)

spatial_obj is any ST_Spatial.

Return Type
HG_Npolygons returns an integer.

Example
exec sp_spatial_query '
 select HG_Npolygons(sw_geometry)
 from parcel
MI Pro for SQL Server/Functions Guide 77

Observer Functions
 where sw_member < 10
'

HG_Nsubcurves
HG_Nsubcurves returns the number of subcurves embedded in the ST_Lines contained by
ST_Spatial. Subcurves are two-point line segments based on a line's start, end, and internal
points.

Syntax
HG_Nsubcurves(spatial_obj)

spatial_obj is any ST_Spatial.

Return Type
HG_Nsubcurves returns an integer.

Example
exec sp_spatial_query '
 select HG_Nsubcurves(sw_geometry)
 from rdpaved
'

HG_Ori_Rotation
HG_Ori_Rotation returns the angle of rotation of an ST_Spatial's orientation point. The
orientation point is an attribute of all ST_Spatials used frequently for attribute positioning.

All ST_Spatials have an orientation point, which can be used for map-attribute positioning.

HG_Nsubcurves

start

end
seg 1

seg 2

seg 3

seg 4

seg 5
78 MI Pro for SQL Server/Functions Guide

Observer Functions
The placement of the orientation point can communicate angle and rotation.

The angle of rotation is determined by the position of the orientation point, relative to the
centroid

Syntax
HG_Ori_Rotation(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_Ori_Rotation returns a type real.

Example
exec sp_spatial_query '
 select HG__Ori_Rotation(sw_geometry)
 from spotelev
 where sw_member = 1
'

HG_Ori_X
HG_Ori_X returns the x-coordinate value of an ST_Spatial's orientation point. The orientation
point is a property of all ST_Spatials, used frequently for attribute positioning. For more
information, see HG_Ori_Rotation on page 78.

Syntax
HG_Ori_X(spatial_obj)

spatial_obj is an ST_Spatial.

Orientation

orientation point

centroid
MI Pro for SQL Server/Functions Guide 79

Observer Functions
Return Type
HG_Ori_X returns a double precision number.

Example
exec sp_spatial_query '
 select HG_Ori_X(sw_geometry)
 from spotelev
 where sw_member = 11
'

HG_Ori_Y
HG_Ori_Y returns the y-coordinate value of an orientation point. The orientation point is a
property of all ST_Spatials, used frequently for attribute positioning. For more information,
see HG_Ori_Rotation on page 78.

Syntax
HG_Ori_Y(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_Ori_Y returns a double precision number.

Example
exec sp_spatial_query '
 select HG_Ori_Y(sw_geometry)
 from spotelev
 where sw_member = 11
'

HG_Ori_Z
HG_Ori_Z returns the z-coordinate value of an orientation point. The orientation point is a
property of all ST_Spatials, used frequently for attribute positioning. For more information,
see HG_Ori_Rotation on page 78.

Syntax
HG_Ori_Z(spatial_obj)
80 MI Pro for SQL Server/Functions Guide

Observer Functions
spatial_obj is an ST_Spatial.

Return Type
HG_Ori_Z returns a double precision number.

Example
exec sp_spatial_query '
 select HG_Ori_Z(sw_geometry)
 from spotelev
 where sw_member = 11
'

HG_Point
HG_Point returns a specific ST_Point from an ST_Curve. ST_Curves contain zero to n
ST_Points, stored sequentially in a LIST. The number parameter in HG_Point selects a
particular ST_Point from that LIST. HG_Point is identical to the function HG_PointN on
page 85.

Syntax
HG_Point(spatial_obj, number)

spatial_obj is an ST_Spatial representing an HG_Curve.

number is an integer representing the position of an object in a LIST.

Return Type
HG_Point returns an ST_Spatial representing an ST_Point.

Example
exec sp_spatial_query '
 select HG_GetString(HG_Point(sw_geometry, 3))
 from rdpaved
 where sw_member < 24
'

Caveat
HG_GetString on page 42 has been added to the example so that it will return geometry in text
format.
MI Pro for SQL Server/Functions Guide 81

Observer Functions
HG_Pointdyn_Ori_X
HG_Pointdyn_Ori_X returns the x-coordinate value of an ST_Point's dynamic orientation
point. The dynamic orientation point is one of ST_Point's dynamic attributes, used for map
attribute positioning and sizing.

ST_Points can store information about scale and orientation, commonly used for map
attribute positioning and sizing. These attributes compose the point dynamic.

One element of the point dynamic is orientation. It is similar to the global ST_Spatial
orientation, but it is an additional place to store orientation information. So, an ST_Point can
have two levels of orientation: its orientation as an ST_Spatial and its orientation as an
ST_Point.

The second element of the point dynamic is scale. Scale allows applications that do mapping
or plotting to specify the size of an attribute associated with an ST_Point. Scaling can be done
for both x and y axes.

The scale is based on one unit of plot.

Orientation

orientation point

centroid

Scaling

y

x

2

1

map attribute
82 MI Pro for SQL Server/Functions Guide

Observer Functions
Syntax
HG_Pointdyn_Ori_X(spatial_obj)

spatial_obj is an ST_Spatial representing an ST_Point.

Return Type
HG_Pointdyn_Ori_X returns a double precision number.

Example
exec sp_spatial_query '
 select HG_Pointdyn_Ori_X(sw_geometry)
 from spotelev
 where sw_member = 1
'

HG_Pointdyn_Ori_Y
HG_Pointdyn_Ori_Y returns the y-coordinate value of an ST_Point's orientation point. The
orientation point is one of ST_Point's dynamic attributes, used for map attribute positioning
and sizing. For more information, refer to HG_Pointdyn_Ori_X on page 82.

Syntax
HG_Pointdyn_Ori_Y(spatial_obj)

spatial_obj is an ST_Spatial representing an ST_Point.

Return Type
HG_Pointdyn_Ori_Y returns a double precision number.

Example
exec sp_spatial_query '
 select HG_Pointdyn_Ori_Y(sw_geometry)
 from spotelev
 where sw_member = 1
'

HG_Pointdyn_Rot
HG_Pointdyn_Rot returns the rotation, in degrees, of an ST_Point's dynamic orientation
point, relative to an ST_Point. The point dynamic attributes are used frequently for map
MI Pro for SQL Server/Functions Guide 83

Observer Functions
attribute positioning and sizing. For more information, refer to HG_Pointdyn_Ori_X on
page 82.

Syntax
HG_Pointdyn_Rot(spatial_obj)

spatial_obj is an ST_Spatial representing an ST_Point.

Return Type
HG_Pointdyn_Rot returns a value of type real.

Example
exec sp_spatial_query '
 select HG_Pointdyn_Rot(sw_geometry)
 from spotelev
 where sw_member = 1
'

HG_Pointdyn_Xscale
HG_Pointdyn_Xscale returns the X-axis scale value of an ST_Point's dynamic scale. Scale is an
attribute of all ST_Points, used frequently for map attribute positioning and sizing. The scale
is based on one unit of plot scale. For more information, refer to HG_Pointdyn_Ori_X on
page 82.

Syntax
HG_Pointdyn_Xscale(spatial_obj)

spatial_obj is an ST_Spatial representing an ST_Point.

Return Type
HG_Pointdyn_Xscale returns a value of type real.

Example
exec sp_spatial_query '
 select HG_Pointdyn_Xscale(sw_geometry)
 from spotelev
 where sw_member = 1
'

84 MI Pro for SQL Server/Functions Guide

Observer Functions
HG_Pointdyn_Yscale
HG_Pointdyn_Yscale returns the Y-axis value of an ST_Point's scale attribute. The scale
attribute is one of ST_Point's dynamic attributes, used frequently for attribute positioning and
sizing. The scale is based on one unit of plot scale.

Syntax
HG_Pointdyn_Yscale(spatial_obj)

spatial_obj is an ST_Spatial representing an ST_Point.

Return Type
HG_Pointdyn_Yscale returns a value of type real.

Example
exec sp_spatial_query '
 select HG_Pointdyn_Yscale(sw_geometry)
 from spotelev
 where sw_member = 1
'

HG_PointN
HG_PointN returns the Nth point in a line geometry, where N is a specified position. The
index on HG_Point is zero based. For example, zero (0) is used for the first element and one (1)
is used for the second element.

If the input number is greater than the number of points in the geometry, NULL is returned.

Syntax
HG_PointN(spatial_obj, position)

spatial_obj is an ST_Spatial representing an ST_Polyline.

position is an integer representing the position of a point in a line geometry.

Return Type
HG_PointN returns an ST_Spatial representing an ST_Point.
MI Pro for SQL Server/Functions Guide 85

Observer Functions
Example
exec sp_spatial_query '
 select HG_GetString(HG_PointN(sw_geometry, 3))
 from rdpaved
 where sw_member = 35
'

Caveat
HG_GetString on page 42 has been added to the example so that it will return geometry in text
format.

HG_Radians
HG_Radians returns the length of the radius of an ST_CircularArc, or HG_Circle.

Syntax
HG_Radians(spatial_obj)

spatial_obj is an ST_Spatial representing an ST_CircularArc, or HG_Circle.

Return Type
HG_Radians returns a double precision number.

Example
exec sp_spatial_query '
 select HG_Radians(sw_geometry)
 from testcon
 where HG_Is_Circle(sw_geometry)
'

HG_Start_Arc_Rot
HG_Start_Arc_Rot returns the ST_CircularArc's start angle in degrees: zero (0) degrees is the
positive X-axis, ninety (90) degrees is the positive Y-axis.
86 MI Pro for SQL Server/Functions Guide

Observer Functions
Refer also to the description for HG_End_Arc_Rot on page 67.

Syntax
HG_Start_Arc_Rot(spatial_obj)

spatial_obj is an ST_Spatial representing an ST_CircularArc.

Return Type
HG_Start_Arc_Rot returns a real value.

HG_Start_Tangent
HG_Start_Tangent returns the tangent of an HG_Curve's start point.

Syntax
HG_Start_Tangent(spatial_obj)

spatial_obj is an ST_Spatial representing an HG_Curve.

Return Type
HG_Start_Tangent returns a real value.

Example
exec sp_spatial_query '
 select HG_Start_Tangent(sw_geometry)
 from testcon
 where HG_Is_HG_Curve(sw_geometry)
'

HG_Start_Arc_Rot

45 o

arc start

arc end

270 o

0 o

90 o

180 o
MI Pro for SQL Server/Functions Guide 87

Observer Functions
HG_Start_Tangent_P
HG_Start_Tangent_P returns an ST_Point on the tangent of an HG_Curve's start point.

Syntax
HG_Start_Tangent_P(spatial_obj)

spatial_obj is an ST_Curve.

Return Type
HG_Start_Tangent_P returns an ST_Spatial representing an ST_Point.

Example
exec sp_spatial_query '
 select HG_GetString(HG_Start_Tangent_P(sw_geometry))
 from testcon
 where HG_Is_HG_Curve(sw_geometry)
'

Caveat
HG_GetString on page 42 has been added to the example so that it will return geometry in text
format.

HG_Subcurve
HG_Subcurve returns a specific subcurve from an ST_Curve. A subcurve is a two-point line
segment contained in an ST_Curve. The start point, and end point parameters determine which
subcurve is returned.

Syntax
HG_Subcurve(spatial_obj, start_point, end_point)

HG_Subcurve

start

end
seg 1

seg 2

seg 3

seg 4

seg 5
88 MI Pro for SQL Server/Functions Guide

Observer Functions
spatial_obj is an ST_Spatial representing an HG_Curve.

start_point is an integer representing the position of an ST_Point in a LIST.

end_point is an integer representing the position of an ST_Point in a LIST.

Return Type
HG_Subcurve returns an ST_Spatial.

Example
exec sp_spatial_query '
 select HG_GetString(HG_Subcurve(sw_geometry, 1, 2))

 from rdpaved
 where sw_member = 8
'

Caveat
HG_GetString on page 42 has been added to the example so that it will return geometry in text
format.

HG_Urt_X
HG_Urt_X returns the x-coordinate of the upper right corner of the minimum enclosing
rectangle for the geometry.

Syntax
HG_Urt_X(spatial_obj)

spatial_obj is an ST_Spatial representing an ST_Polygon.

HG_Urt_X

(x, y)
MI Pro for SQL Server/Functions Guide 89

Observer Functions
Return Type
HG_Urt_X returns a double precision number.

Example
exec sp_spatial_query '
 select HG_Urt_X(sw_geometry)
 from lake
'

HG_Urt_Y
HG_Urt_Y returns the y-coordinate of the upper right corner of the minimum enclosing
rectangle for the geometry.

Syntax
HG_Urt_Y(spatial_obj)

spatial_obj is an ST_Spatial representing an ST_Polygon.

Return Type
HG_Urt_Y returns a double precision number.

Example
exec sp_spatial_query '
 select HG_Urt_Y(sw_geometry)
 from lake
'

HG_Urt_Y

(x, y)
90 MI Pro for SQL Server/Functions Guide

Observer Functions
HG_Urt_Z
HG_Urt_Z returns the z-coordinate of the upper right corner of the minimum enclosing
rectangle for the geometry.

Syntax
HG_Urt_Z(spatial_obj)

spatial_obj is an ST_Spatial representing an ST_Polygon.

Return Type
HG_Urt_Z returns a double precision number.

Example
exec sp_spatial_query '
 select HG_Urt_Z(sw_geometry)
 from lake
'

ST_X
ST_X returns the x-coordinate of a point geometry. If the geometry is not a point, ST_X returns
NULL.

Syntax
ST_X(spatial_obj)

spatial_obj is an ST_Spatial representing an ST_Point.

Return Type
ST_X returns a double precision number.

Example
exec sp_spatial_query '
 select ST_X(sw_geometry)
 from spotelev
'

MI Pro for SQL Server/Functions Guide 91

Observer Functions
ST_Y
ST_Y returns the y-coordinate of a point geometry. If the geometry is not a point, ST_Y returns
NULL.

Syntax
ST_Y(spatial_obj)

spatial_obj is an ST_Spatial representing an ST_Point.

Return Type
ST_Y returns a double precision number.

Example
exec sp_spatial_query '
 select ST_Y(sw_geometry)
 from spotelev
'

ST_Z
ST_Z returns the z-coordinate of a point geometry. If the geometry is not a point, ST_Z returns
NULL.

Syntax
ST_Z(spatial_obj)

spatial_obj is an ST_Spatial representing an ST_Point.

Return Type
ST_Z returns a double precision number.

Example
exec sp_spatial_query '
 select ST_Z(sw_geometry)
 from spotelev
'

92 MI Pro for SQL Server/Functions Guide

Chapter

➤ Function Descriptions

➤ Transformation Calculation

9
 Spatial Functions

Spatial functions perform operations on geometries to

create new geometries. Spatial functions include:

Spatial Functions
Function Descriptions
Please note that HG_GetString has been added to some of the examples in this section, so that

they return geometry in text format.

HG_Affine
The HG_Affine function performs a 2x3 affine transformation on a geometry.

In a 2x3 affine transformation a matrix is used to specify the coefficients of the general form
affine transformation:

x' = A*x + B*y + C

y' = D*x + E*y + F

Syntax
HG_Affine(spatial_obj, A, B, C, D, E, F)

spatial_obj is an ST_Spatial.

A, B, C, D, E, F are 2x3 matrix double values.

Return Type
HG_Affine returns an ST_Spatial.

Example
This example scales a point (1,1) by 100 in the x direction about origin, by –100 in the y
direction about origin, and then translates the result by (1, -1).

HG_Affine
HG_Affine3D
HG_As_Curves
HG_As_Paths
HG_As_Points
HG_Center_In
HG_Center_In_3D
HG_Centroid
HG_Clean
HG_Clean_I
HG_Clean_S
HG_Combine

HG_Connect
HG_Convex_Hull
HG_Difference
HG_End_Of
HG_Envelope
HG_Erase
HG_Erase_Outside
HG_Filter
HG_Filter_Curves
HG_Filter_Paths
HG_Filter_Points
HG_Filter_Polygons

HG_Intersect_In
HG_LL_Circle
HG_Split
HG_Start_Of
HG_Sym_Difference
HG_Union
ST_Adjacent
ST_Buffer
ST_Contain
ST_Overlap
ST_Transform
ST_Transform3D
94 MI Pro for SQL Server/Functions Guide

Spatial Functions
exec sp_spatial_query '
 select HG_Affine (
 ST_Spatial(''ST_Point(1, 1)''),
 100.0, 0.0, 1.0, 0.0, -100.0, -1.0)
 from dual
'

In this example:

x = 1
y = 1

The result will be:

x' = 100*x + 0*y + 1 = 101
y' = 0*x + (-100)*y + (-1) = -101

HG_Affine3D
The HG_Affine3D function performs a 3x4 affine transformation on three-dimensional
geometry.

In a 3x4 affine transformation HG_Matrix_3x4 is used to specify the coefficients of the general
form affine transformation:

x' = A*x + B*y + C*z + D

y' = E*x + F*y + G*z + H

z' = I*x + J*y + K*z + L

Syntax
HG_Affine3D(spatial_obj, A, B, C, D, E, F, G, H, I, J, K, L)

spatial_obj is an ST_Spatial.

A,B,C,D,E,F,G,H,I,J,K,L are 3x4 matrix double values.

Return Type
HG_Affine3D returns an ST_Spatial.

Usage
Use this function with three-dimensional geometry.
MI Pro for SQL Server/Functions Guide 95

Spatial Functions
Example
This HG_Affine3D example scales a point (1,1,2) by 100 in the x direction about origin, by –100
in the y direction about origin, by 1 in the z direction about the origin, and then translates the
result by (1, -1, 0).

exec sp_spatial_query '
 select HG_Affine3D(
 ST_Spatial(''ST_Point(1, 1, 2)''),
 100.0, 0.0, 0.0, 1.0, 0.0, -100.0,
 0.0, -1.0, 0.0, 0.0, 1.0, 0.0
)
 from dual
'

In this example x = 1, y = 1, and z = 2. The result will be:

x' = 100*x + 0*y + 0*z + 1 = 101
y' = 0*1 + (-100)*y + 0*z + (-1) = -101
z' = 0*x + 0*y + 1*z +0 = 2

HG_As_Curves
HG_As_Curves returns a copy of an instance of a geometry, where all polygon and path
elements are replaced by their composite curves (HG_Curve).

Syntax
HG_As_Curves(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_As_Curves returns ST_Spatial representing an ST_Polyline.

Example
exec sp_spatial_query '
 select HG_GetString(HG_As_Curves(sw_geometry))
 from flood100
'

96 MI Pro for SQL Server/Functions Guide

Spatial Functions
HG_As_Paths
HG_As_Paths returns a copy of an SW_GEOMETRY, where all polygons are replaced by the
line-strings forming their boundary.

Syntax
HG_As_Paths(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_As_Paths returns an ST_Spatial representing an ST_Polyline.

Example
exec sp_spatial_query '
 select HG_GetString(HG_As_Paths(sw_geometry))
 from flood100
’

HG_As_Points
HG_As_Points returns the pointal equivalent of a spatial object by breaking primitives down
into their component points. In the case of a circle, only three points are returned: the center
point, and two points on the circumference.

Input Output

polygon line string

Input Output

pointspolygon
MI Pro for SQL Server/Functions Guide 97

Spatial Functions
Syntax
HG_As_Points(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_As_Points returns an ST_Spatial representing an ST_Point.

 Example
exec sp_spatial_query '

 select HG_GetString(HG_As_Points(sw_geometry))

 from flood100

'

HG_Center_In
HG_Center_In centers spatial_obj1 on spatial_obj2, in two dimensional space.

spatial_obj1 (e.g., the circle) is transformed so that its centroid overlaps the centroid of
spatial_obj2 (e.g., the box).

Syntax
HG_Center_In(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial.

Return Type
HG_Center_In returns an ST_Spatial.

Input Output

Object centroids
overlap.
98 MI Pro for SQL Server/Functions Guide

Spatial Functions
Example
exec sp_spatial_query '
 select HG_GetString(HG_Center_In(
 flood100.sw_geometry,
 ST_Spatial(''ST_Point(1753960.182000, 10698421.103000)'')
))
 from flood100
'

HG_Center_In_3D
HG_Center_In_3D centers spatial_obj1 in spatial_obj2, in three-dimensional space.

spatial_obj1 (e.g., the circle) is transformed so that its centroid overlaps the centroid of
spatial_obj2 (e.g., the box).

Syntax
HG_Center_In_3D(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial to be centered in spatial_obj2.

spatial_obj2 is an ST_Spatial.

Return Type
HG_Center_In_3D returns an ST_Spatial.

 Example
This example generates a circle in the testcon table and then centers it with a point when
HG_Center_In_3D is called.

Input Output

Object centroids
overlap.
MI Pro for SQL Server/Functions Guide 99

Spatial Functions
insert into testcon (sw_member, sw_geometry) values (
 67, ST_Spatial('HG_Circle(ST_Point(1,1,1), 10'))
)

exec sp_spatial_query '
 select HG_GetString(HG_Center_In_3D(
 sw_geometry, ST_Spatial(''ST_Point(2,2,2)'')
))
 from testcon
'

HG_Centroid
HG_Centroid returns the centroid of a given geometry. The centroid is a point representing
the weighted center of a shape.

Syntax
HG_Centroid(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
ST_Centroid returns an ST_Spatial representing an ST_Point.

Example
exec sp_spatial_query '
 select sw_member, HG_GetString(HG_Centroid(sw_geometry))
 from lake
'

HG_Clean
HG_Clean takes an object as input and creates a topologically correct geometry.

Input Output

object Point representing
the weighted center.
100 MI Pro for SQL Server/Functions Guide

Spatial Functions
Refer also to HG_Clean_I and HG_Clean_S, which use topology, control, and filter values.

Syntax
HG_Clean(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_Clean returns an ST_Spatial.

Example
exec sp_spatial_query '
 select HG_GetString(HG_Clean(sw_geometry))
 from testcon
 where sw_member=1
'

HG_Clean_I
HG_Clean_I takes an object as input and creates a topologically correct geometry. Topology
and control parameters are specified as integer values:

Output Topology Type Integer Value

undefined
node
linear
surface

-1
0
1
2

Output Control Type Integer Value

discard
no aggregates
drop spikes
drop dangles

0
1
2
3

Input Output
MI Pro for SQL Server/Functions Guide 101

Spatial Functions
The following diagrams show the expected behavior with basic shape types when specifying
topology and control values. The right side of the arrow is the resulting geometry. The lines
could be any curve geometry: circular arc, polyline, curve, or circle. The following illustrate
results for node, linear, and surface output topology options:

The following output controls work on surfaces only: drop spikes, and drop dangles. They
will have no effect if set with node or linear output topology options.

By default, the clean functions set the current topology to be 'surface'. If a linear (polyline) is
given as input, then an unclosed surface is returned. In this case, the direction of the polyline
is not preserved. If the topology is set to be 'linear' or 'auto-detected' then the output would be
a linear object with direction preserved.

Input Output

HG_Clean Topology Options

node

linear

surface

1

2

3

HG_Clean Controls

drop dangles

drop spikes
102 MI Pro for SQL Server/Functions Guide

Spatial Functions
This function is the same as HG_Clean_S except that it accepts topology and control types as
integer values instead of strings. Refer also to HG_Clean.

Syntax
HG_Clean_I(spatial_obj, topology, control, filter)

spatial_obj is an ST_Spatial.

topology is the topological type as an integer.

control is the control type to build topology as an integer.

filter is the filter tolerance, specified in double precision database units.

Return Type
HG_Clean_I returns an ST_Spatial.

Example
exec sp_spatial_query '
 select HG_GetString(HG_Clean_I(sw_geometry, 2, 3, 2.0))
 from testcon
 where sw_member=1
’

HG_Clean_S
HG_Clean_S takes an object as input and creates a topologically correct geometry. Topology
and control parameters are specified as strings:

Output Topology Type Input String

undefined
node
linear
surface

'undef'
'node'
'linear'
'surface'

Output Control Type Input String

discard
no aggregates
drop spikes
drop dangles

'discard'
'no_agg'
'drop_spikes'
'drop_dangles'
MI Pro for SQL Server/Functions Guide 103

Spatial Functions
This function is the same as HG_Clean_I except that it accepts topology and control types as
strings instead of as integer values. Please refer to HG_Clean_I for a more detailed description
of what is returned by these two functions.

Refer also to the related function HG_Clean.

Syntax
HG_Clean_S(spatial_obj, topology, control, filter)

spatial_obj is an ST_Spatial.

topology is the topological type as a Boolean value (true or false).

control is the control type to build topology as a Boolean value (true or false).

filter is the filter tolerance, specified in double precision database units.

Return Type
HG_Clean_S returns an ST_Spatial.

Example
exec sp_spatial_query '
 select HG_GetString(
 HG_Clean_S(sw_geometry,'surface','drop_dangles',2.0)
)
 from testcon
 where sw_member=1
'

HG_Combine
HG_Combine is a union, it dissolves the boundaries in a spatial object. HG_Combine will
drop any common primitives and form only one object as shown in the following image.

Input Output
104 MI Pro for SQL Server/Functions Guide

Spatial Functions
Syntax
HG_Combine(spatial_obj)

spatial_obj is a geometry collection of type ST_Spatial.

Return Type
HG_Combine returns an ST_Spatial.

Example
exec sp_spatial_query '
 select HG_GetString(HG_Combine(sw_geometry))
 from testcon
 where sw_member=9
'

HG_Connect
HG_Connect returns the points of connection between a line (ST_Polyline) and an
SW_GEOMETRY. Connection points occur when the boundary of the SW_GEOMETRY
shares a point with either the start or end of the line (or both).

Syntax
HG_Connect(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial representing an ST_Polyline.

Return Type
HG_Connect returns an ST_Spatial representing an ST_Point.

Input Output

connection point

end

start
MI Pro for SQL Server/Functions Guide 105

Spatial Functions
Example
exec sp_spatial_query '
 select HG_GetString(
 HG_Connect(flood100.sw_geometry, rdpaved.sw_geometry)
)
 from flood100, rdpaved
'

HG_Convex_Hull
HG_Convex_Hull returns the minimum boundary around a spatial object without the
boundary being concave. The result is the spatial object representing the convex hull of the
perimeter.

Syntax
HG_Convex_Hull(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_Convex_Hull returns an ST_Spatial representing a ST_Polygon.

Example
exec sp_spatial_query '
 select HG_GetString(HG_Convex_Hull(sw_geometry))
 from testcon
 where sw_member=2
'

Input Convex Hull Operation Output

Object containing
multiple elements. convex hull
106 MI Pro for SQL Server/Functions Guide

Spatial Functions
HG_Difference
HG_Difference removes those places where two spatial objects overlap. The point set
difference is returned, (A-B).

The HG_Difference function is very similar to HG_Erase except that the cutter object does not
need to be a closed surface, it could be a linear object.

Syntax
HG_Difference(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial.

Return Type
HG_Difference returns an ST_Spatial.

Example
exec sp_spatial_query '
 select HG_GetString(
 HG_Difference(a.sw_geometry, b.sw_geometry)
)
 from flood100 b, lake a
'

HG_End_Of
HG_End_Of returns the end point of a line if it matches a point in the boundary of an
ST_Spatial.

Input Difference Operation Output
MI Pro for SQL Server/Functions Guide 107

Spatial Functions
Syntax
HG_End_Of(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial representing an ST_Polyline.

Return Type
HG_End_Of returns an ST_Spatial.

Example
exec sp_spatial_query '
 select HG_GetString(
 HG_End_Of(a.sw_geometry, b.sw_geometry)
)
 from flood100 a, rdpaved b
'

HG_Envelope
HG_Envelope returns the smallest rectangle, orthogonal to the axes, that can contain a
geometry. The rectangle is an ST_Polygon.

Input Output

end point

end

start

Input Output

minimum enclosing
rectangle

Envelope Process
108 MI Pro for SQL Server/Functions Guide

Spatial Functions
The following diagram shows the behavior of HG_Envelope with the basic shape types. The
right side of the arrow is the return object. The line type represents all curve objects: circular
arc, polyline, curve, and circle.

 Note: The rectangle surrounding the point and horizontal line is conceptual only. For
example, the point rectangle's lower left point and upper right point are the same.

Syntax
HG_Envelope(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_Envelope returns an ST_Spatial representing an ST_Polygon.

Example
This query retrieves the smallest rectangle that contains the given SW_GEOMETRY:

exec sp_spatial_query '
 select lake.sw_member,
 HG_GetString(HG_Envelope(lake.sw_geometry))
 from lake
'

HG_Erase
HG_Erase removes those places of a target object that overlap with a cutting object. Any
places where the target object overlaps with the cutter object are removed. HG_Erase
produces the opposite result to HG_Erase_Outside.

HG_Envelope Behavior

Polygon

Point (rectangle)

Line (rectangle)
MI Pro for SQL Server/Functions Guide 109

Spatial Functions
HG_Erase performs a cutting operation; one spatial object is used as the target object to be cut,
and another spatial object is used as the cutter. A new geometry is generated as output. Those
places where the cutter object intersect with the target object are removed. If the cutter object
does not intersect with the target object, then the target object remains unchanged. If the cutter
object contains the target object, then the target object is removed from the result. If using a
binary relationship, where object A is the target and object B is the cutter, results in object B
are subtracted from object A. For example:

Note that the polygon was completely contained within the cutter object and has been
removed from the result. Although the linear object has been cut into multiple pieces, the
result is a single region object.

The HG_Erase function is very similar to HG_Difference except that the cutter object must be
a closed surface (a closed polygon). The Difference function accepts a cutter object that is not
closed, such as a linear.

Syntax
HG_Erase(spatial_obj1, spatial_obj2)

spatial_obj1 is the target ST_Spatial.

spatial_obj2 is the cutter ST_Spatial (a closed polygon).

Return Type
HG_Erase returns an ST_Spatial.

Input Erase Operation Output

target

cutter

Input Erase Operation Output

cutter
110 MI Pro for SQL Server/Functions Guide

Spatial Functions
Example
exec sp_spatial_query '
 select HG_GetString(
 HG_Erase(flood100.sw_geometry, lake.sw_geometry)
)
 from flood100, lake
'

HG_Erase_Outside
HG_Erase_Outside removes those places of a target object that do not overlap with a cutting
object. HG_Erase_Outside produces the opposite result to HG_Erase on page 109.

The cutter object must be a closed surface (a closed polygon).

A set of objects are target objects, and another set of objects are cutter objects. The portion of a
target object, which overlaps with the cutter object is retained, and all else is discarded. A new
geometry is generated as output. If the target object is contained within the cutter object then
it remains in the result unchanged. If the target object does not intersect with the cutting
object, then it is removed from the result. Using a binary relationship where object A is the
target, and object B is the cutter, results in A intersected with B. For example:

Input Erase Outside Operation Output

target

cutter

Input Erase Out Operation Output

cutter
MI Pro for SQL Server/Functions Guide 111

Spatial Functions
 Note: The polygon was completely contained within the cutter object and remains
unchanged in the result. Those portions of the linear object that lie outside of the
cutter object are not included within the result.

Syntax
HG_Erase_Outside(spatial_obj1, spatial_obj2)

spatial_obj1 is the target ST_Spatial.

spatial_obj2 is the cutter ST_Spatial (a closed polygon).

Return Type
HG_Erase_Outside returns an ST_Spatial.

Example
exec sp_spatial_query '
 select HG_GetString(
 HG_Erase_Outside(drain.sw_geometry, flood100.sw_geometry)
)
 from drain, flood100
'

HG_Filter
HG_Filter returns a filtered line strings, either a polyline (ST_Polyline), or curve (HG_Curve).

Often, the detail of the given line may be more than is required, making processing inefficient.
HG_Filter allows you to reduce the detail to a desired level, by specifying a filter tolerance.

Points falling under the filter tolerance will be ignored, forming a simplified curve, more like
the second (above). HG_Filter performs the following on the input object:

• Creates a temporary straight line from the start point to the end point of the object.

• Determines if any points in the object have a distance from the temporary straight line
that exceeds the filter tolerance.

Input Output
112 MI Pro for SQL Server/Functions Guide

Spatial Functions
If no, then all points between the start and end points are ignored and a two point line
is created from start to end.

If yes, then two lines are created, start-to-point, and point-to-end. The process
continues recursively until no more points fall outside the filter tolerance.

The filter operation uses the Douglas-Puecker algorithm (The Canadian Cartographer, Vol.10
No.2, Dec. 1973, pp.112-122), to reduce the number of points to represent a line.

Syntax
HG_Filter(spatial_obj, tolerance)

spatial_obj is an ST_Spatial representing an ST_Polyline or HG_Curve.

tolerance is the tolerance level used in the filter calculation, in double precision database units.

Return Type
HG_Filter returns an ST_Spatial representing an ST_Polyline or HG_Curve.

Example
exec sp_spatial_query '
 select HG_GetString(HG_Filter(lake.sw_geometry, 0.1))
 from lake
'

HG_Filter_Curves
HG_Filter_Curves returns all of the curves from within a spatial object of type
SW_GEOMETRY.

Syntax
HG_Filter_Curves(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_Filter_Curves returns an ST_Spatial containing ST_Polyline.

Example
exec sp_spatial_query '
 select HG_GetString(HG_Filter_Curves(sw_geometry))
MI Pro for SQL Server/Functions Guide 113

Spatial Functions
 from testcon
'

HG_Filter_Paths
HG_Filter_Paths returns all of the paths within a spatial object of type SW_GEOMETRY.

Syntax
HG_Filter_Paths(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_Filter_Paths returns an ST_Spatial representing an ST_Polyline.

Example
exec sp_spatial_query '
 select HG_GetString(HG_Filter_Paths(sw_geometry))
 from testcon
'

HG_Filter_Points
HG_Filter_Points returns all of the points from within a spatial object of type
SW_GEOMETRY.

Syntax
HG_Filter_Points(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_Filter_Points returns an ST_Spatial representing a ST_Point.

Example
exec sp_spatial_query '
 select HG_GetString(HG_Filter_Points(sw_geometry))
 from testcon
'

114 MI Pro for SQL Server/Functions Guide

Spatial Functions
HG_Filter_Polygons
HG_Filter_Polygons returns all of the polygons from within a spatial object.

Syntax
HG_Filter_Polygons(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_Filter_Polygons returns an ST_Spatial representing an ST_Polygon.

Example
exec sp_spatial_query '
 select HG_GetString(HG_Filter_Polygons(sw_geometry))
 from testcon
'

HG_Intersect_In
HG_Intersect_In is identical to ST_Overlap. It returns all of the overlapping elements between
two spatial objects. Two elements are overlapping when they share common points. If there
are no overlapping elements, then NULL is returned.

Syntax
HG_Intersect_In(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial.

Return Type
HG_Intersect_In returns an ST_Spatial.

Input Output
MI Pro for SQL Server/Functions Guide 115

Spatial Functions
Example
exec sp_spatial_query '
 select HG_GetString(
 HG_Intersect_In(flood100.sw_geometry, lake.sw_geometry)
)
 from flood100, lake
'

HG_LL_Circle
HG_LL_Circle accepts the Longitude/Latitude of a center point and a radial distance in
meters, and creates a geometry representing a search rectangle. The rectangle is a good
approximation of a circle in Longitude/Latitude.

This function provides for the curvature of the Earth and takes into account the non-
uniformity of the lat/long coordinate system. It uses a spherical model of Earth to generate
the output polygon. It is particularly useful when the search area is large, straddles UTM
zones, or is located at relatively high (or low) latitudes.

All the vertices of the polygon generated by this function will be at a spherical distance (refer
to HG_SphericalDist on page 53) of <dist_meters> from the <longitude> <latitude> point.

 Note: This is a more precise circle for radial search on lat/long points than a circular
region generated by either, ST_Spatial('ST_Polygon(HG_Circle(x, y, radius))') or
ST_Buffer(ST_Spatial('ST_Point(x, y)', dist, filter)

Syntax
HG_LL_Circle(longitude, latitude, dist_meters)

longitude is the longitude of the center point (x value), in degrees.

latitude is the latitude of the center point (y value), in degrees.

dist_meters is the radius of the circle to be generated in meters.

Return Type
HG_LL_Circle returns an ST_Spatial.

Example
The following example uses the World sample database. Please refer to your product Release
Notes (or readme file) for a description of how to install this sample database.
116 MI Pro for SQL Server/Functions Guide

Spatial Functions
This example finds all the capitals that lie within a spherical distance of 1000 kilometers from
Paris.

exec sp_spatial_query '
 select a.capital, HG_SphericalDist(
 a.sw_geometry,b.sw_geometry
) as dist_meters
 from worldcap a, worldcap b
 where b.capital = 'Paris'
 and ST_Overlaps(a.sw_geometry, HG_LL_Circle(
 ST_x(b.sw_geometry), ST_y(b.sw_geometry), 1000000
))
'

Caveat
This function generates an approximation of a circular area in the lat/long coordinate system. It
assumes a spherical model of Earth, and therefore may be unsuitable for applications where a
high degree precision is needed. For such applications, it may be more appropriate to
transform the point to a suitable projected coordinate system, perform a circular buffer, and
then transform it back to Longitude/Latitude.

This function does not handle regions straddling the lat/long limits. For example, it will not
handle regions straddling the international date line.

HG_Split
HG_Split splits those places of a target object that overlap the cutting object.

HG_Split combines the results of both the HG_Erase and HG_Erase_Outside functions. One
object is used as the target object and a second object is used as the cutting object. A new
geometry is generated as output.

The target object is compared to the cutter object. If the target and cutter objects intersect, then
the result will contain one object which represents the result as if an erase operation was

Input Split Operation Output

1

target

cutter
MI Pro for SQL Server/Functions Guide 117

Spatial Functions
performed, and another object which represents the result as if an erase outside operation was
performed. If a target object is completely contained within a target cutter or completely
outside of it, then it will remain in the result unchanged. For example:

Note that the polygon was completely contained within the cutter object and remains
unchanged in the result. Although the linear object has been cut into multiple pieces, the
result is a single region object.

The cutter object must be a closed surface (a closed polygon).

Syntax
HG_Split(spatial_obj1, spatial_obj2)

spatial_obj1 is the target ST_Spatial.

spatial_obj2 is the cutter ST_Spatial (a closed polygon).

Return Type
HG_Split returns an ST_Spatial.

Example
exec sp_spatial_query '
 select HG_GetString(
 HG_Split(flood100.sw_geometry, lake.sw_geometry)
)
 from lake, flood100
'

HG_Start_Of
HG_Start_Of returns the start point of a line if it matches a point in the boundary of an
ST_Spatial.

Input Split Operation Output

cutter
118 MI Pro for SQL Server/Functions Guide

Spatial Functions
Syntax
HG_Start_Of(spatial_obj1, spatial_obj2)

spatial_obj1 is any ST_Spatial.

spatial_obj2 is an ST_Spatial representing an ST_Polyline.

Return Type
HG_Start_Of returns an ST_Spatial.

Example
exec sp_spatial_query '
 select HG_GetString(
 HG_Start_Of(lake.sw_geometry, flood100.sw_geometry))
 from flood100, lake
'

HG_Sym_Difference
HG_Sym_Difference performs the symmetric difference (x-or) on the parameters ((A-B) Union
(B-A)).

Syntax
HG_Sym_Difference(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial.

Return Type
HG_Sym_Difference returns an ST_Spatial.

Input Output

start point

start

end
MI Pro for SQL Server/Functions Guide 119

Spatial Functions
Example
exec sp_spatial_query '
 select HG_GetString(
 HG_Sym_Difference(lake.sw_geometry, flood100.sw_geometry))
 from flood100, lake
'

HG_Union
HG_Union combines two geometries, and returns the union.

The following diagram shows the behavior of HG_Union with the basic shape types. The right
side of the arrow is the return object. In the illustration, Line represents all Curve objects:
ST_CircularArc, ST_Polyline, HG_Curve, and HG_Circle.

Collections of objects follow these basic examples. For more information on how complex
collections of objects are treated in SpatialWare, see Understanding Geometry Collections.

Syntax
HG_Union(spatial_obj1, spatial_obj2)

Input Output

HG_Union Behavior

Point/Point
1
2

1

Point/Line

Point/Polygon

Line/Polygon

Polygon/Polygon

Line/Line
120 MI Pro for SQL Server/Functions Guide

Spatial Functions
spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial.

Return Type
HG_Union returns an ST_Spatial.

Example
exec sp_spatial_query '
 select HG_GetString(
 HG_Union(lake.sw_geometry, flood100.sw_geometry))
 from lake, flood100
 where lake.lake_cm = 17400001
 and flood100.flood100_cm = 39300021
'

ST_Adjacent
ST_Adjacent returns a geometry made up of the points of intersection and common line
segments between two spatial objects. NULL is returned if the two spatial objects have no
common values, or if the two objects share interior points.

The following diagram shows the basic valid adjacency conditions. Note that polygons can
only share their boundary points with other shapes. If another shape encroaches a polygon's
interior, then it is no longer adjacent.

Input OutputAdjacent Process
MI Pro for SQL Server/Functions Guide 121

Spatial Functions
 Syntax
ST_Adjacent(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial.

Return Type
ST_Adjacent returns an ST_Spatial representing an ST_Point.

Example
exec sp_spatial_query '
 select HG_GetString(
 ST_Adjacent(flood100.sw_geometry, pubbldg.sw_geometry))
 from flood100, pubbldg where flood100.sw_member=2
'

ST_Buffer
ST_Buffer takes a geometry, buffer distance, and filter tolerance. The filter parameter specifies
a filter tolerance on the buffer creation process.

Adjacency Conditions

Point/Point 1 2

Line/Point

Line/Line

Polygon/Point

Polygon/Line

Polygon/Polygon

Input OutputBuffer Process
122 MI Pro for SQL Server/Functions Guide

Spatial Functions
The following diagram shows the behavior of ST_Buffer with basic shape types. The object on
the right side of the arrow is the return object. The Line shape type represents all curve objects:
ST_CircularArc, ST_Polyline, HG_Curve, and HG_Circle.

Filter tolerance allows you to control the buffer's detail level. By default, ST_Buffer creates a
buffer with the same detail as the input object. Detail is represented by the number of points in
the boundary of the object.

ST_Buffer then uses the simplified curve as input and creates a buffer.

Syntax
ST_Buffer(spatial_obj1, width, filter)

spatial_obj is an ST_Spatial.

width is the size of the buffer, in double precision database units.

filter is the filter tolerance, specified in double precision database units, possibly NULL.

Return Type
ST_Buffer returns an ST_Spatial representing an ST_Polygon.

Example
The following query creates a buffer 66 feet around a lake.

exec sp_spatial_query '
 select sw_member, HG_GetString(
 ST_Buffer(SW_GEOMETRY, 66.0, 0.1))

HG_Buffer Behavior

Point

Line

Polygon

Input Output
MI Pro for SQL Server/Functions Guide 123

Spatial Functions
 from lake
'

select sw_member, ST_Buffer(sw_geometry, 66.0, 0.1)
from lake;

Caveat
Please be aware that ST_Buffer may produce surprising results in the Longitude/Latitude
coordinate system. The MapInfo GIS Extension assumes a Cartesian coordinate system when
performing this function, and performs no adjustment to account for where the coordinate is
on the Earth.

In the Longitude/Latitude coordinate system, buffer units are in the units of Longitude/
Latitude. A "unit" is not defined well in Longitude/Latitude, as it changes depending on
where you are in the world. Moreover, a "unit" means different distances on x and y
directions.

ST_Contain
ST_Contain returns geometry1 if it is entirely contained within geometry2 and NULL if it is
not. Boundaries can touch, but the inner object cannot have any points outside the containing
boundary.

Syntax
ST_Contain(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial.

Return Type
ST_Contain returns an ST_Spatial.

Input Output

1
2

Geometry 1 is returned,
because it is entirely
contained within
geometry 2.
124 MI Pro for SQL Server/Functions Guide

Spatial Functions
Example
exec sp_spatial_query '
 select HG_GetString(
 ST_Contain(pubbldg.sw_geometry, flood100.sw_geometry))
 from pubbldg, flood100
'

ST_Overlap
ST_Overlap returns all of the overlapping elements between two spatial objects. Two elements
are overlapping when they share common points. If there are no overlapping elements, then a
NULL is returned.

The following diagram shows the behavior of ST_Overlap with the basic geometries. The
output geometry is shown on the right side of the arrow. The line type represents all curve
geometries: circular arc, polyline, curve, and circle. Note that this diagram can also be useful
for understanding ST_Overlaps. The basic conditions below that return an object, will also
return true with ST_Overlaps.

Input Output

ST_Overlap Conditions

Point

Line

Polygon

Line/Polygon

Polygon/Polygon

Line/Line
MI Pro for SQL Server/Functions Guide 125

Spatial Functions
Syntax
ST_Overlap(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial.

Return Type
ST_Overlap returns an ST_Spatial.

Example
exec sp_spatial_query '
 select HG_GetString(ST_Overlap(a.sw_geometry, b.sw_geometry))
 from flood100 a, lake b
'

ST_Transform
ST_Transform moves, rotates, or scales two-dimensional geometry using a transformation
matrix (sx, tx, rx, sy, ty, ry), where sx is the x factor and x is a scale factor, translation
(transform) in the x-direction, and rx is rotation (in degrees) about the x axis. The sy, ty, ry
values behave in the same way for the y direction.

Transform Rotate Scale

ST_Transform
126 MI Pro for SQL Server/Functions Guide

Spatial Functions

ST_Transform requires an origin parameter, which specifies the point of rotation. Rotation is
in degrees. If there is no rotation in your transformation then a NULL value can be used for
the origin parameter, the default rotation point is (0,0).

All transformations can be performed at the same time, but it is not necessary to specify all
three. For example, if you only want to rotate a geometry, include zeros in the matrix for scale
and transform. You can set the following:

• To specify no scaling use 1.0 for x or y.

• To specify no transform use 0.0 for x or y.

• To specify no rotation use 0.0 for x or y.

For information on how the transformation is calculated, refer to Transformation Calculation.

Refer also to ST_Transform3D on page 128 to transform a three-dimensional object.

Syntax
ST_Transform(spatial_obj, origin, sx, tx, rx, sy, ty, ry)

spatial_obj is an ST_Spatial.

origin is the point of origin, an ST_Spatial.

sx and sy are scale in x and y.

rx and ry are rotation in x and y.

tx and ty are transformation in x and y.

All values are in database units.

Return Type
ST_Transform returns an ST_Spatial.

Transform Rotate Scale

ST_Transform
MI Pro for SQL Server/Functions Guide 127

Spatial Functions
Usage
Use this function with two-dimensional geometry.

Example
This example scales a box to create a rectangle. The point of origin is (0,0). The scale values are
2 along the x axis, and 3 along the y axis.

exec sp_spatial_query '
 select HG_GetString(ST_Transform(
 ST_Spatial(''HG_Box(1, 1, 2, 2)''),
 ST_Spatial(''ST_Point(0, 0)''),
 2.0, 0.0, 0.0, 3.0, 0.0, 0.0))
 from dual
'

This example moves a box along the x and y axis. The point of origin is (0,0). The transform
values are 3 along the x axis, and -3 along the y axis.

exec sp_spatial_query '
 select HG_GetString(ST_Transform(
 ST_Spatial(''HG_Box(1, 1, 2, 2)''),
 ST_Spatial(''ST_Point(0, 0)''),
 0.0, 3.0, 0.0, 0.0, -3.0, 0.0))
 from dual
'

This example rotates a box around the point of origin by 35 degrees. The point of origin is
(0,0). The rotation values are 35 for x, and 20 for y.

exec sp_spatial_query '
 select HG_GetString(ST_Transform(
 ST_Spatial(''HG_Box(1, 1, 2, 2)''),
 ST_Spatial(''ST_Point(0, 0)''),
 0.0, 0.0, 35.0, 0.0, 0.0, 20.0
))
 from dual
'

ST_Transform3D
ST_Transform moves, rotates, or scales three-dimensional geometry using a transformation
matrix (sx, tx, rx, sy, ty, ry, sz, tz, rz), where sx is the x scale factor, tx is translation (transform)
in the x-direction, and rx is rotation (in degrees) about the axis. The sy, ty, ry, and sz, tz, rz
values behave in the same way in the y and z directions.
128 MI Pro for SQL Server/Functions Guide

Spatial Functions
 ST_Transform3D requires an origin parameter, which specifies the point of rotation. Rotation
is in degrees. If there is no rotation in your transformation then a NULL value can be used for
the origin parameter, the default rotation point is (0,0,0).

All transformations can be performed at the same time, but it is not necessary to specify all
three. For example, if you only want to rotate a geometry, include zeros in the matrix for scale
and transform. You can set the following:

• To specify no scaling use 1.0 for x, y, or z.

• To specify no transform use 0.0 for x, y, or z.

• To specify no rotation use 0.0 for x, y, or z.

For information on how the transformation is calculated see Transformation Calculation.

Syntax
ST_Transform3D(spatial_obj, origin, sx, tx, rx, sy, ty, ry, sz, tz, rz)

spatial_obj is an ST_Spatial.

origin is the point of origin, an ST_Spatial.

sx, sy, and sz are scale in x, y, and z.

rx, ry, and rz are rotation in x, y, and z.

tx, ty, and tz are transformation in x, y, and z.

All values are in database units.

Return Type
ST_Transform3D returns an ST_Spatial.

Usage
Use this function with three-dimensional geometry.

Transform Rotate Scale

ST_Transform3D
MI Pro for SQL Server/Functions Guide 129

Spatial Functions
Example
This example scales a box to create a rectangle. The point of origin is (0,0,0). The scale values
are 3 along the x axis, 2 along the y axis, and 4 along the z axis.

exec sp_spatial_query '
 select HG_GetString(ST_Transform3D(
 ST_Spatial(''HG_Box(1, 1, 2, 2)''),
 ST_Spatial(''ST_Point(0, 0, 0)''),
 3, 0, 0, 2, 0, 0, 4, 0, 0
))
 from dual
'

This example moves a box along the x, y, and z axis. The point of origin is (0,0,0). The
transform values are 3 along the x axis, -3 along the y axis, and 2 along the z axis.

exec sp_spatial_query '
 select HG_GetString(ST_Transform3D(
 ST_Spatial(''HG_Box(1, 1, 2, 2)''),
 ST_Spatial(''ST_Point(0, 0, 0)''),
 0, 3, 0, 0, -3, 0, 0, 2, 0
))
 from dual
'

This example rotates a box around the point of origin by 35 degrees. The point of origin is
(0,0,0). The rotation values are 35 for x, 20 for y, and 40 for z.

exec sp_spatial_query '
 select HG_GetString(ST_Transform3D(
 ST_Spatial(''HG_Box(1, 1, 2, 2)''),
 ST_Spatial(''ST_Point(0, 0, 0)''),
 0, 0, 35, 0, 0, 20, 0, 0, 40
))
 from dual
'

130 MI Pro for SQL Server/Functions Guide

Spatial Functions
Transformation Calculation
The ST_Transform function performs two dimensional transformation and ST_Transform3D
performs a three dimensional transformation using a textbook transformation calculations.
The calculations are described below.

There are two matrix types used to perform a transformation, 2x3 or 3x3:

2x3 Matrix = '(sx, tx, rx, sy, ty, ry)' where rx and ry must be equal.
3x3 Matrix = '(sx, tx, rx, sy, ty, ry, sz, tz, rz).

Two Dimensional Calculation
In a two dimensional transformation only sx, tx, rx, sy, ty, ry are used with the constraint that
rx == ry:

sx is the Scale in the X-axis,
tx is the Displacement in the X-axis,
sy is the Scale in the Y-axis,
ty is the Displacement in the Y-axis, and
rx = ry is the rotation in the xy planes in degrees.

In two dimensions, sz, tz, and rz have no meaning and must be initialized to 0.0 (or sz may be
1.0).

The effective algorithm is:
1. If the source point to be transformed is p = [x, y] then let PV = [x, y, 1].
2. If rotation point r = [rotx, roty] is specified, then let RV = [rotx, roty, 0].

3. Otherwise, let RV = [0, 0, 0].
set MA = [[cos(rx), -sin(rx), tx], [sin(rx), cos(rx), 0], [0, 0, 1]]

4. Set MB = [[sx, 0, tx], [0, sy, ty], [0, 0, 1]]

5. Let TV = [x', y', 1] be the result of the matrix operation:
TV = ((PV-RV)*MA*MB)+RV

6. Let the transformed point, p' be [x', y'].

Three Dimensional Calculation
In a three dimensional transformation all nine values are used, where:

sx is the Scale in the X-axis,
tx is the Displacement in the X-axis
rx is the rotation in the yz plane,
MI Pro for SQL Server/Functions Guide 131

Spatial Functions
sy is the Scale in the Y-axis,
ty is the Displacement in the Y-axis,
ry is the rotation in the xz plane,
sz is the Scale in the Y-axis,
tz is the Displacement in the Y-axis, and
rz is the rotation in the xy planes in degrees.

The effective algorithm is:
1. If the source point to be transformed is p = [x, y, z] then let PV = [x, y, z, 1].
2. If rotation point r = [rotx, roty, rotz] is specified, then let RV = [rotx, roty, rotz, 0];

otherwise,let RV = [0, 0, 0, 0].

3. Set MA = [[1, 0, 0, 0], [0, cos(rx), -sin(rx), 0], [0, sin(rx), cos(rx), 0], [0, 0, 0, 1]] (yz plane
rotation).

4. Set MB = [[cos(ry), 0, -sin(ry), 0], [0, 1, 0, 0], [sin(ry), 0, cos(ry), 0], [0, 0, 0, 1]] (xz plane
rotation).

5. Set MC = [[cos(rz), -sin(rz),0, 0], [sin(rz), cos(rz), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]] (xy plane
rotation).

6. Set MD = [[sx, 0, 0, tx], [0, sy, 0, ty], [0, 0, sz, tz], [0, 0, 0, 1]].

7. .Let TV = [x', y', z', 1] be the result of the matrix operation:
TV = ((PV-RV)*MA*MB*MC*MD)+RV

8. Let the transformed point, p' be [x', y', z'].
132 MI Pro for SQL Server/Functions Guide

Chapter

➤ Function Descriptions

10
 Spatial Predicates

Spatial Predicates analyze geometries against specific
conditions. These functions return 'TRUE' or 'FALSE'
values and are generally used within a WHERE clause.

Spatial Predicates
Function Descriptions
Spatial Predicates include:

HG_Above
HG_Above returns TRUE if point1 has a higher z coordinate value than point2. In
heterogeneous geometries, the z ordinate of the first point geometry defines the level. If both
points have the same z ordinate values, neither point is higher than the other, then HG_Above
returns FALSE.

This function only works with point geometry. The results are only relevant if the input points
are in three dimensions (if they have z values).

Syntax
HG_Above(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial representing a three-dimensional point (ST_Point).

spatial_obj2 is an ST_Spatial representing a three-dimensional point (ST_Point).

Return Type
HG_Above returns a Boolean value.

HG_Above
HG_Assembled
HG_At_End_Of
HG_At_Start_Of
HG_Below
HG_Connected_To
HG_Identical
HG_Is_Box
HG_Is_Circle
HG_Is_CircularArc
HG_Is_Closed
HG_Is_Contiguous
HG_Is_Curve

HG_Is_Empty
HG_Is_Forward
HG_Is_HG_Curve
HG_Is_Invalid
HG_Is_Nulldir
HG_Is_Path
HG_Is_Point
HG_Is_Polygon
HG_Is_Polyline
HG_Is_Quad
HG_Is_Reverse
HG_Is_Triangle
HG_Is_Valid

HG_Is_Znull
HG_Level
ST_Adjacent_To
ST_Contained_By
ST_Contains
ST_Equals
ST_Meets
ST_Not_Equals
ST_Outside
ST_Overlaps
ST_Within
134 MI Pro for SQL Server/Functions Guide

Spatial Predicates
Example
exec sp_spatial_query '
 select sw_member from spotelev
 where HG_Above(
 spotelev.sw_geometry,
 ST_Spatial(''ST_Point(5.0, 5.0, 5.0)'')
)
'

HG_Assembled
This function returns TRUE if the input ST_Spatial is assembled. All ST_Spatials contain the
assembled attribute, which can be used by applications that require it. For example, an
application may set Assembled to TRUE when a shape is created. If the object is manipulated
at a later time by the application, the flag will be set to FALSE until it can be validated.

Syntax
HG_Assembled(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_Assembled returns a Boolean value.

Example
exec sp_spatial_query ’
 select sw_member from rdpaved where HG_Assembled(sw_geometry)
’

HG_At_End_Of
HG_At_End_Of returns TRUE if the end point of the line matches a point in the ST_Spatial's
boundary.
MI Pro for SQL Server/Functions Guide 135

Spatial Predicates
The following diagram shows the behavior of HG_At_End_Of with the basic shape types. The
Line type represents all curve objects: ST_CircularArc, ST_Polyline, HG_Curve, and
HG_Circle. The end of the line is the right end.

Collections of objects follow these basic examples.

Syntax
HG_At_End_Of(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial representing an ST_Polyline.

Return Type
HG_At_End_Of returns a Boolean value.

Example
exec sp_spatial_query '
 select a.sw_member, b.sw_member
 from rdpaved a, rdpaved b
 where HG_At_End_Of(a.sw_geometry,b.sw_geometry)
 and a.sw_member = 28
'

HG_At_End_Of

end

start

HG_At_End_Of Behavior

Point

Line

Polygon
136 MI Pro for SQL Server/Functions Guide

Spatial Predicates
HG_At_Start_Of
HG_At_Start_Of returns TRUE if the start point of a line matches a point in the boundary of
an object.

The following diagram shows the behavior of HG_At_Start_Of with the basic shape types.
HG_At_Start_Of returns a Boolean value (of TRUE or FALSE). The following diagram
illustrates the behavior of HG_At_Start_Of with the basic valid shapes. All cases below return
TRUE. For the diagram, the start point is always the left end of the line. Collections of objects
follow these basic examples.

Syntax
HG_At_Start_Of(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial representing an ST_Polyline.

Return Type
HG_At_Start_Of returns a Boolean value.

HG_At_Start_Of

start

end

HG_At_Start_Of Behavior

Point

Line

Polygon
MI Pro for SQL Server/Functions Guide 137

Spatial Predicates
Example
exec sp_spatial_query '
 select a.sw_member, b.sw_member
 from rdpaved a, rdpaved b
 where HG_At_Start_Of(a.sw_geometry, b.sw_geometry)
 and a.sw_member = 30
'

HG_Below
HG_Below returns TRUE if point1 has a lower z coordinate value than point2. In
heterogeneous geometries, the z ordinate of the first point geometry defines the level. If both
points have the same z ordinate values, neither point is higher than the other, then HG_Below
returns FALSE.

This function only works with point geometry. The results are only relevant if the input points
are in three dimensions (if they have z values).

Syntax
HG_Below(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial representing a three-dimensional ST_Point.

spatial_obj2 is an ST_Spatial representing a three-dimensional ST_Point.

Return Type
HG_Below returns a Boolean value.

Example
exec sp_spatial_query '
 select sw_member from spotelev
 where HG_Above(
 spotelev.sw_geometry,
 ST_Spatial(''ST_Point(5.0, 5.0, 55.0)'')
)
'

HG_Connected_To
HG_Connected_To returns TRUE if the end point or start point of a line matches a point in the
object.
138 MI Pro for SQL Server/Functions Guide

Spatial Predicates
The following diagram shows the behavior of HG_Connected_To with the basic shape types.
'Line' represents all Curve objects: ST_CircularArc, ST_Polyline, HG_Curve, and HG_Circle.
Collections of objects follow these basic examples. Line derection in these examples is from
left to right. All of these examples will return TRUE.

Syntax
HG_Connected_To(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial representing an ST_Polyline.

Return Type
HG_Connected_To returns a Boolean value.

Example
exec sp_spatial_query '
 select rdpaved.sw_member
 from rdpaved, flood100
 where HG_Connected_To(
 rdpaved.sw_geometry, flood100.sw_geometry

HG_Connected_To

end

start

start

end

HG_Connected_To Behavior

Point/Line

Line/Line

Polygon/Line
MI Pro for SQL Server/Functions Guide 139

Spatial Predicates
)
'

HG_Identical
HG_Identical returns TRUE if two spatial objects are equal (both objects must have the same
primitives in the same order).

 Note: This function returns the same value as ST_Equals on page 155.

Syntax
HG_Identical(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial.

Return Type
HG_Identical returns a Boolean value.

Example
exec sp_spatial_query '
 select sw_member
 from spotelev
 where HG_Identical(
 spotelev.sw_geometry,
 ST_Spatial(''
 ST_Point(1753960.182000, 10698421.103000, 2784.945100)
 '')
)
'

HG_Is_Box
HG_Is_Box returns TRUE if the input object contains only one HG_Box.

Syntax
HG_Is_Box(spatial_obj)

spatial_obj is an ST_Spatial.
140 MI Pro for SQL Server/Functions Guide

Spatial Predicates
Return Type
HG_Is_Box returns a Boolean value.

Example
exec sp_spatial_query '
 select *
 from parcel
 where HG_Is_Box(parcel.sw_geometry)
'

HG_Is_Circle
HG_Is_Circle returns TRUE if the input object contains only one HG_Circle.

Syntax
HG_Is_Circle(spatial_obj1)

spatial_obj1 is an ST_Spatial.

Return Type
HG_Is_Circle returns a Boolean value.

Example
exec sp_spatial_query '
 select sw_member
 from lake
 where HG_Is_Circle(sw_geometry)
'

HG_Is_CircularArc
HG_Is_CircularArc returns TRUE if the input object contains only one ST_CircularArc.

Syntax
HG_Is_CircularArc(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_Is_CircularArc returns Boolean value.
MI Pro for SQL Server/Functions Guide 141

Spatial Predicates
Example
exec sp_spatial_query '
 select sw_member
 from parcel
 where HG_Is_CircularArc(sw_geometry)
'

HG_Is_Closed
HG_Is_Closed returns true if the input polygon, ST_Polygon, or line string, ST_Polyline, is
closed. An ST_Polygon or ST_Polyline is closed if the start and end points are the same.

Syntax
HG_Is_Closed(spatial_obj1)

spatial_obj1 is an ST_Spatial representing a ST_Polygon or ST_Polyline.

Return Type
HG_Is_Closed returns a Boolean value.

Example
exec sp_spatial_query '
 select sw_member
 from parcel
 where HG_Is_Closed(sw_geometry)
'

HG_Is_Contiguous
HG_Is_Contiguous returns TRUE if the input path, ST_Path, is contiguous. An ST_Path is
contiguous when all of the component curves, HG_Curve, are touching, so that the path is
uninterrupted.

Syntax
HG_Is_Contiguous(spatial_obj1)

spatial_obj1 is an ST_Spatial representing a ST_Polyline.

Return Type
HG_Is_Contiguous returns a Boolean value.
142 MI Pro for SQL Server/Functions Guide

Spatial Predicates
Example
insert into testcon (sw_member, sw_geometry)
 values (64, 'ST_Spatial(ST_Path(LIST{
 ST_Polyline(LIST{
 ST_Point(1,1),
 ST_Point(2,2)
 }),
 ST_CircularArc(LIST{
 ST_Point(2,2),
 ST_Point(2,3),
 ST_Point(3,3)
 }),
 ST_Polyline(LIST{
 ST_Point(3,3),
 ST_Point(3,1),
 ST_Point(1,1)
 })
}))')

exec sp_spatial_query '
 select HG_Is_Contiguous(sw_geometry) from testcon
'

HG_Is_Curve
HG_Is_Curve returns TRUE if the input ST_Spatial contains only one HG_Curve.

Syntax
HG_Is_Curve(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_Is_Curve returns a Boolean value.

Example
exec sp_spatial_query '
 select sw_member
 from parcel
 where HG_Is_Curve(sw_geometry)
'

MI Pro for SQL Server/Functions Guide 143

Spatial Predicates
HG_Is_Empty
HG_Is_Empty returns TRUE if the geometry is empty, FALSE if it is not.

Syntax
HG_Is_Empty(spatial_obj1)

spatial_obj1 is an ST_Spatial.

Return Type
HG_Is_Empty returns a Boolean value.

Example
This example returns the sw_member of the empty geometry.

exec sp_spatial_query '
 select sw_member from parcel
 where HG_Is_Empty(sw_geometry)
'

HG_Is_Forward
HG_Is_Forward returns true if the direction attribute of the input ST_Line is FORWARD. All
ST_Lines have a direction attribute of FORWARD, REVERSE, or NULL.

Syntax
HG_Is_Forward(spatial_obj1)

spatial_obj1 is an ST_Spatial representing an ST_Polyline.

Return Type
HG_Is_Forward returns a Boolean value.

Example
exec sp_spatial_query '
 select sw_member
 from rdpaved
 where HG_Is_Forward(sw_geometry)
'

144 MI Pro for SQL Server/Functions Guide

Spatial Predicates
HG_Is_HG_Curve
HG_Is_HG_Curve returns TRUE if the input ST_Spatial contains only one HG_Curve.

Syntax
HG_Is_HG_Curve(spatial_obj)

spatial_obj is an ST_Spatial.

Return Type
HG_Is_HG_Curve returns a Boolean value.

Example
This example returns the sw_member of the geometry containing only one HG_Curve.

exec sp_spatial_query '
 select sw_member
 from flood100
 where HG_Is_hg_Curve(sw_geometry)
'

HG_Is_Invalid
HG_Is_Invalid is used to determine if a curve is invalid. If a curve is invalid, then
HG_Is_Invalid returns TRUE.

Syntax
HG_Is_Invalid(spatial_obj1)

spatial_obj1 is an ST_Spatial representing a ST_Polyline.

Return Type
HG_Is_Invalid returns a Boolean value.

Example
insert into testcon (sw_member, sw_geometry)
 values (65, 'ST_Spatial(ST_Path(LIST{
 ST_Polyline(LIST{
 ST_Point(1,1),
 ST_Point(2,2)
 }),
MI Pro for SQL Server/Functions Guide 145

Spatial Predicates
 ST_CircularArc(LIST{
 ST_Point(2,2),
 ST_Point(2,3),
 ST_Point(3,3)
 }),
 ST_Polyline(LIST{
 ST_Point(3,3),
 ST_Point(3,1),
 ST_Point(1,1)
 })
 }))')
exec sp_spatial_query '
 select HG_Is_Invalid(sw_geometry) from testcon
'

HG_Is_Nulldir
HG_Is_Nulldir returns TRUE if the direction property of the input ST_Line is 'NULL'. All
ST_Lines have a direction attribute of FORWARD, REVERSE, or NULL.

Syntax
HG_Is_Nulldir(spatial_obj1)

spatial_obj1 is an ST_Spatial representing an ST_Polyline.

Return Type
HG_Is_Nulldir returns a Boolean value.

Example
exec sp_spatial_query '
 select sw_member
 from rdpaved
 where HG_Is_Nulldir(sw_geometry)
'

HG_Is_Path
HG_Is_Path returns TRUE if the input object contains only one ST_Path.

Syntax
HG_Is_Path(spatial_obj1)
146 MI Pro for SQL Server/Functions Guide

Spatial Predicates
spatial_obj1 is an ST_Spatial.

Return Type
HG_Is_Path returns a Boolean value.

Example
exec sp_spatial_query '
 select sw_member
 from parcel
 where HG_Is_Path(sw_geometry)
'

HG_Is_Point
HG_Is_Point returns TRUE if the input object contains only one ST_Point.

Syntax
HG_Is_Point(spatial_obj1)

spatial_obj1 is an ST_Spatial.

Return Type
HG_Is_Point returns a Boolean value.

Example
exec sp_spatial_query '
 select sw_member
 from spotelev
 where HG_Is_Point(sw_geometry)
'

HG_Is_Polygon
HG_Is_Polygon returns TRUE if the input object contains one ST_Polygon.

Syntax
HG_Is_Polygon(spatial_obj)

spatial_obj1 is an ST_Spatial.
MI Pro for SQL Server/Functions Guide 147

Spatial Predicates
Return Type
HG_Is_Polygon returns a Boolean value.

Example
exec sp_spatial_query '
 select sw_member
 from lake
 where HG_Is_Polygon(sw_geometry)
'

HG_Is_Polyline
HG_Is_Polyline returns TRUE if the input object contains only one ST_Polyline.

Syntax
HG_Is_Polyline(spatial_obj1)

spatial_obj1 is an ST_Spatial.

Return Type
HG_Is_Polyline returns a Boolean value.

Example
exec sp_spatial_query '
 select sw_member
 from rdpaved
 where HG_Is_Polyline(sw_geometry)
'

HG_Is_Quad
HG_Is_Quad returns TRUE if the input object contains only one HG_Quad.

Syntax
HG_Is_Quad(spatial_obj1)

spatial_obj1 is an ST_Spatial.

Return Type
HG_Is_Quad returns a Boolean value.
148 MI Pro for SQL Server/Functions Guide

Spatial Predicates
Example
exec sp_spatial_query '
 select sw_member
 from flood100
 where HG_Is_Quad(sw_geometry)
'

HG_Is_Reverse
HG_Is_Reverse returns TRUE if the direction attribute of the input ST_line is set to REVERSE.
All ST_Lines have a direction attribute of FORWARD, REVERSE, or NULL.

Syntax
HG_Is_Reverse(spatial_obj1)

spatial_obj1 is an ST_Spatial representing an ST_Polyline.

Return Type
HG_Is_Reverse returns a Boolean value.

Example
exec sp_spatial_query '
 select sw_member from rdpaved
 where HG_Is_Reverse(sw_geometry)
'

HG_Is_Triangle
HG_Is_Triangle returns TRUE if the input object contains only one HG_Triangle.

Syntax
HG_Is_Triangle(spatial_obj1)

spatial_obj1 is an ST_Spatial.

Return Type
HG_Is_Triangle returns a Boolean.
MI Pro for SQL Server/Functions Guide 149

Spatial Predicates
Example
exec sp_spatial_query '
 select sw_member
 from flood100
 where HG_Is_Triangle(sw_geometry)
'

HG_Is_Valid
HG_Is_Valid returns TRUE if the geometry is valid, FALSE if it is not. Valid conditions of the
different geometries are:

Polygon – Valid if it is closed and has valid paths.

Path – Valid if it has two or more points and all points are unique.

Polyline – Valid if it has two or more points and all points are unique.

Circular Arc – Valid if it has exactly three points.

Circle – Valid if it has a radius greater than zero.

Point – Always valid.

Syntax
HG_Is_Valid(spatial_obj)

spatial_obj1 is an ST_Spatial.

Return Type
HG_Is_Valid returns a Boolean value.

Example
exec sp_spatial_query '
 select sw_member
 from lake
 where HG_Is_Valid(lake.sw_geometry)
'

HG_Is_Znull
HG_Is_Znull returns TRUE if the geometry has NULL z coordinates and FALSE otherwise.
150 MI Pro for SQL Server/Functions Guide

Spatial Predicates
Syntax
HG_Is_Znull(spatial_obj)

spatial_obj1 is an ST_Spatial.

Return Type
HG_Is_Znull returns a Boolean value.

Example
exec sp_spatial_query '
 select sw_member
 from spotelev
 where HG_Is_Znull(sw_geometry)
'

HG_Level
HG_Level returns TRUE if point 1 has the same z coordinate value as point 2.

Syntax
HG_Level(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial representing a three dimensional ST_Point.

spatial_obj2 is an ST_Spatial representing a three dimensional ST_Point.

Return Type
HG_Level returns a Boolean value.

Example
exec sp_spatial_query '
 select sw_member
 from spotelev
 where HG_Level(
 spotelev.sw_geometry,
 ST_Spatial(''
 ST_Point(1753960.182000, 10698421.103000, 2784.945100)
 '')
)
'

MI Pro for SQL Server/Functions Guide 151

Spatial Predicates
ST_Adjacent_To
ST_Adjacent_To returns TRUE if two objects touch. They touch if they have one or more
common boundary points, but no common interior points. ST_Adjacent_To is identical to
ST_Meets.

The following diagram shows the basic valid adjacency conditions. Note that polygons can
only share their boundary points with other shapes. If another shape encroaches a polygon's
interior, then it is no longer adjacent.

Syntax
ST_Adjacent_To(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial.

Return Type
ST_Adjacent_To returns a Boolean value.

ST_Adjacent_To

TRUE

Adjacency Conditions

Point/Point 1 2

Line/Point

Line/Line

Polygon/Point

Polygon/Line

Polygon/Polygon
152 MI Pro for SQL Server/Functions Guide

Spatial Predicates
Example
exec sp_spatial_query '
 select rdpaved.sw_member
 from rdpaved, lake
 where ST_Adjacent_To(rdpaved.sw_geometry, lake.sw_geometry)
'

ST_Contained_By
ST_Contained_By returns TRUE if geometry1 is entirely contained within geometry2, and
FALSE if it is not. Boundaries can touch, but the inner object cannot have any points outside
the containing boundary.

ST_Contained_By returns the inverse of what ST_Contains returns.

Syntax
ST_Contained_By(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial.

Return Type
ST_Contained_By returns a Boolean value.

Example
exec sp_spatial_query '
 select a.sw_member, b.sw_member
 from pubbldg a, flood100 b
 where ST_Contained_By(a.sw_geometry, b.sw_geometry)
'

ST_Contained_By

TRUE1

2

MI Pro for SQL Server/Functions Guide 153

Spatial Predicates
ST_Contains
ST_Contains returns TRUE if geometry1 entirely contains geometry2, and FALSE if it is not.
Boundaries can touch, but the inner object cannot have any points outside the containing
boundary. See also ST_Contain.

ST_Contains returns the inverse of what ST_Contained_By returns.

The following diagram illustrates the behavior of ST_Contains with various geometry
combinations. In each of the geometry pairs, the first geometry contains the second. These
cases represent the basic combinations that yield a true. Note that points can't contain
anything but points. Lines can't contain polygons. In the case of a polygon, boundaries may
touch, as long as the interior boundary stays within the exterior boundary.

Syntax
ST_Contains(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial.

ST_Contains

TRUE

1

2

ST_Contains Behavior

Point/Point 1 2

Line/Point

Line/Line

Polygon/Point

Polygon/Line

Polygon/Polygon
154 MI Pro for SQL Server/Functions Guide

Spatial Predicates
Return Type
ST_Contains returns a Boolean value.

Example
exec sp_spatial_query '
 select a.sw_member, b.sw_member
 from pubbldg a, flood100 b
 where ST_Contains(a.sw_geometry, b.sw_geometry)
'

ST_Equals
ST_Equals returns TRUE if spatial_obj1 is identical to spatial_obj2 (both objects must have the
same primitives in the same order).

 Note: This function returns the same value as HG_Identical on page 140.

Syntax
ST_Equals(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial.

Return Type
ST_Equals returns a Boolean value.

Example
exec sp_spatial_query '
 select a.sw_member, a.sw_geometry, b.sw_member, b.sw_geometry
 from flood100 a, flood100 b
 where ST_Equals(a.sw_geometry, b.sw_geometry)
'

ST_Meets
ST_Meets is the same as ST_Adjacent_To. It returns TRUE if the two objects touch, but do not
share common interior points.
MI Pro for SQL Server/Functions Guide 155

Spatial Predicates
The following diagram shows the basic valid adjacency conditions. Note that polygons can
only share their boundary points with other shapes. If another shape encroaches a polygon's
interior, then it is no longer adjacent.

Syntax
ST_Meets(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial.

Return Type
ST_Meets returns a Boolean value.

Example
exec sp_spatial_query '
 select rdpaved.sw_member
 from rdpaved, lake
 where ST_Meets(rdpaved.sw_geometry, lake.sw_geometry)
'

ST_Meets

TRUE

Adjacency Conditions

Point/Point 1 2

Line/Point

Line/Line

Polygon/Point

Polygon/Line

Polygon/Polygon
156 MI Pro for SQL Server/Functions Guide

Spatial Predicates
ST_Not_Equals
ST_Not_Equals returns TRUE if spatial_obj1 is not exactly identical to spatial_obj2 (no
tolerance applies).

Syntax
ST_Not_Equals(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial.

Return Type
ST_Not_Equals returns a Boolean value.

Example
exec sp_spatial_query '
 select HG_GetString(pubbldg.sw_geometry)
 from pubbldg where (ST_Not_Equals(pubbldg.sw_geometry,
ST_Spatial(’’HG_Box(1,1,2,2)'')))

ST_Outside
ST_Outside returns TRUE only if there are no common points between the two objects.

This function is the opposite of ST_Overlaps.

Syntax
ST_Outside(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial.

ST_Outside

TRUE
MI Pro for SQL Server/Functions Guide 157

Spatial Predicates
Return Type
ST_Outside returns a Boolean value.

Example
exec sp_spatial_query '
 select a.sw_member from lake a, flood100 b
 where ST_Outside(a.sw_geometry, b.sw_geometry)
'

ST_Overlaps
ST_Overlaps returns TRUE if elements of two geometries overlap. Two elements are
overlapping when they share common points. If there are no overlapping elements, then
ST_Overlaps returns FALSE. See also ST_Overlap on page 125.

This function is the opposite of ST_Outside on page 157.

Syntax
ST_Overlaps(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial.

Return Type
ST_Overlaps returns a Boolean value.

Example
This example does not use the spatial index on the table. For large tables, use SDO_FILTER to
make use of spatial indices defined on the table.

exec sp_spatial_query '
 select ST_Overlap(flood100.sw_geometry, lake.sw_geometry)
 from flood100, lake

ST_Overlaps

TRUE
158 MI Pro for SQL Server/Functions Guide

Spatial Predicates
 where ST_Overlaps(flood100.sw_geometry, lake.sw_geometry)
'

ST_Within
ST_Within returns TRUE if geometry1 is entirely contained within geometry 2, and FALSE if
it is not. Boundaries can touch, but the inner object cannot have any points outside the
containing boundary.

This is the same as ST_Contained_By on page 153.

Syntax
ST_Within(spatial_obj1, spatial_obj2)

spatial_obj1 is an ST_Spatial.

spatial_obj2 is an ST_Spatial.

Return Type
ST_Within returns a Boolean value.

Example
exec sp_spatial_query '
 select rdpaved.sw_member from rdpaved, flood100
 where ST_Within(rdpaved.sw_geometry, flood100.sw_geometry)
'

ST_Within

TRUE
MI Pro for SQL Server/Functions Guide 159

Chapter

➤ Performing Coordinate
Transformations

➤ OGC Well-Known Text

11
 Using Coordinate Systems

This section describes how to perform coordinate system
transformations.

The following chapter provides supporting material to this
chapter on using coordinate systems. It lists reference
tables for Projections, Spheroids/Ellipsoids, Coordinate
Units, and Datums.

Using Coordinate Systems
Performing Coordinate Transformations
SpatialWare for SQL Server provides SQL function for coordinate transformation. Geometries
can be transformed from one coordinate system to another using HG_CSTransform.

The HG_CSTransform function performs an explicit transformation: applications must
provide the geometry, the description of the coordinate system the geometry is in, and the
description of the coordinate system to transform to. The description of the coordinate system
is in the form of an OGC well-known text representation. Coordinate system descriptions are
stored in a table called master..SpatialWare.HG_SpatialRef.

For more information about the transformation function, refer to the chapter describing
Coordinate functions in the SpatialWare SQL/Spatial Section.

 Note: Geometries are not tagged with the coordinate system that they are in. You may
want to transform data from Longitude/Latitude to a planar coordinate system in
order to perform accurate area calculations.

The SpatialWare.HG_SpatialRef Table
A table of supported coordinate systems, called HG_SpatialRef, is provided. This table
contains the OGC well-known text strings. (These are the same as the coordinate systems
defined in MapInfo Professional's MAPINFOW.PRJ.) The values in this table may be used in a
join to perform coordinate system transformations.

 Note: SQL Server users working with MapInfo Professional may notice that this table
excludes non-earth projections. This is because they are not defined in the OpenGIS
Consortium's model. You can, however, implement transformation between non-
earth systems using HG_Transform or HG_Affine.

The following generates a complete list of supported coordinate systems stored in the
HG_SpatialRef table.

select cs_name from master..SpatialWare.HG_SpatialRef
order by cs_name

A coordinate system is identified by a string of not more than 67 characters. This identifier is
unique across the database instance, and is shared by all schemas in the instance. The
following are examples of valid identifiers:

• 'British National Grid'

• 'Longitude / Latitude (NAD 83)'

• 'UTM Zone 28 (ED 50)'

• 'Vermont (1983)'
162 MI Pro for SQL Server/Functions Guide

Using Coordinate Systems
 Note: Since identifiers are strings, please take note of white spaces when using them.

You can find a coordinate system identifier by querying the HG_SpatialRef table. The
following example shows how to find the definition of the Robinson coordinate system:

select srtext from HG_SpatialRef
where cs_name = 'Robinson'

OGC Well-Known Text
Coordinates are defined according to the standards outlined by the OpenGIS Consortium. For
more information about OGC well-known text, refer to the Simple Features Specification for
SQL (http://www.opengis.org/techno/specs/99-049.pdf).

Coordinate system definitions are stored in the HG_SpatialRef table.

The MapInfo GIS Extension supports projected coordinates (PROJCS) and geographic
coordinates (GEOGCS). Geocentric coordinates (GEOCCS) are not supported.

Projected Coordinates
The following is the Extended Backus Naur Form (EBNF) definition of the string
representation of a projected coordinate system:

<coordinate system> = <projected cs> | <geographic cs> |
<geocentric cs>

<projected cs> = PROJCS[‘<name>‘, <geographic cs>,
<projection>, {<parameter>,}* <linear unit>]

<projection> = PROJECTION[‘<name>‘]

<parameter> = PARAMETER[‘<name>‘, <value>]

<value> = <number>

The projected coordinate system is defined with a name (‘<name>‘) followed by the
geographic coordinate system, the map projection, zero (0) or more parameters, and the linear
unit of measure.

An example of a projected coordinate system is British National Grid. Its string representation
is:

PROJCS[‘British National Grid’,

GEOGCS[‘Ordnance Survey GreatBrit’,

DATUM[‘Ordnance Survey Great Brit’,

SPHEROID[‘Airy 1930’,6377563.396000,299.324965]],

PRIMEM[‘Greenwich’,0],

UNIT[‘Decimal Degree’,0.017453292520]],
MI Pro for SQL Server/Functions Guide 163

Using Coordinate Systems
PROJECTION[‘Transverse Mercator’],

PARAMETER[‘Scale_Factor’,0.999601],

PARAMETER[‘Central_Meridian’,-2.000000],

PARAMETER[‘Latitude_Of_Origin’,49.000000],

PARAMETER[‘False_Easting’,400000.000000],

PARAMETER[‘False_Northing’,-100000.000000],

UNIT[‘Meter’,1.000000000000]]

UNIT represents either an angular or linear unit of measure.

<angular unit> = <unit>

<linear unit> = <unit>

<unit> = UNIT[‘<name>‘, <conversion factor>]

<conversion factor> = <number>

The <conversion factor> must be larger than zero; it specifies per unit the number of meters
for a linear unit or the number of radians for an angular unit.

Projected coordinate systems are based upon a geographic coordinate system.

Geographic Coordinates
The following is the EBNF definition of the string representation of a geographic coordinate
system:

<geographic cs> = GEOGCS[‘<name>‘, <datum>, <prime meridian>,
<angular unit>]

<datum> = DATUM[‘<name>‘, <spheroid> {, <shift-x>, <shift-y>,
<shift-z> {, <rot-x>, <rot-y>, <rot-z>, <scale_adjust> } }]

<spheroid> = SPHEROID[‘<name>‘, <semi-major axis>, <inverse
flattening>]

<semi-major axis> = <number> NOTE: semi-major axis is measured
in meters and must be > 0.

<inverse flattening> = <number>

<prime meridian> = PRIMEM[‘<name>‘, <longitude>]

<longitude> = <number>

The geographic coordinate system is defined with a name (‘<name>‘) followed by the datum,
the prime meridian, and the angular unit of measure. In the MapInfo GIS Extension, datum
has been enhanced from the OGC well-known text standard to support user defined
projections. Datum includes the following information:

• shift-x, shift-y, shift-z are in meters.

• rot-x, rot-y, rot-z are in seconds.

• scale_adjust is in parts per million.
164 MI Pro for SQL Server/Functions Guide

Using Coordinate Systems
The sign is specified by subtracting the datum's values from WGS84.

An example of a geographic coordinate system is Longitude/Latitude (NAD 83); its string
representation is:

GEOGCS[‘Longitude / Latitude (NAD 83)’,

DATUM[‘GRS 80’,

SPHEROID[‘GRS 80’,6378137.000000,298.257222]],

PRIMEM[‘Greenwich’,0],

UNIT[‘Decimal Degree’,0.017453292520]]
MI Pro for SQL Server/Functions Guide 165

Chapter

➤ Projections

➤ Spheroids/Ellipsoids

➤ Coordinate Units

➤ Datums

12
 Coordinate Transformation Reference
Tables

This chapter lists reference tables for Projections,
Spheroids/Ellipsoids, Coordinate Units, and Datums.

Coordinate Transformation Reference Tables
Projections
The following table lists the projections supported. .

Table 1:

Geographic (Lat/Long) Interrupted Goode Homolosine

Albers Conical Equal Area Mollweide

Lambert Conformal Conic Interrupted Mollweide

Mercator Hammer

Polyconic Wagner IV

Equidistant Conic Wagner VII

Transverse Mercator Oblated Equal Area

Stereographic Non-earth

Lambert Azimuthal Equal Area Transverse Mercator Danish System 45 Bornholm

Azimuthal Equidistant Transverse Mercator Danish System 34 Jylland-Fyn

Gnomonic Transverse Mercator Sjaelland

Orthographic Transverse Mercator Finnish KKJ

General Vertical Near-Side Perspective Eckert IV

Sinusiodal Eckert VI

Equirectangular Gall

Miller Cylindrical Lambert Conformal Conic (Belgium 1972)

Van der Grinten New Zealand Map Grid

Hotine Oblique Mercator Cylindrical Equal Area

Robinson Swiss Oblique Mercator

Space oblique mercator Bonne

Alaska Conformal Cassini
168 MI Pro for SQL Server/Functions Guide

Coordinate Transformation Reference Tables
 Note: The SQL Server implementation does not use Project IDs.

Spheroids/Ellipsoids
The following table lists the ellipsoids supported.

 Note: The SQL Server implementation does not use Ellipsoid IDs.

Table 2:

Clarke 1866 Everest (Kertau) Walbeck

 WGS 72 Fischer 1960 (Mercury) Bessel 1841 (NGO 1948)

Australian Fischer 1960 (South Asia) South American 1969

Krassovsky Fischer 1968 Clarke 1858

International 1924 GRS 67 Clarke 1880 (Jamaica)

Hayford Helmert 1906 Clarke 1880 (Palestine)

Clarke 1880 Hough Everest (Timbalai)

GRS 80 South American 1969 Everest (Kalianpur)

Clarke 1866 (Michigan) War Office Indonesian

Airy 1930 WGS 60 NWL 9D

Bessel 1841 WGS 66 NWL 10D

Everest WGS 84 OSU86F

Sphere Clarke 1880 (IGN) OSU91A

Airy 1930(Ireland 1965) 0IAG 75 Plessis 1817

Bessel 1841 (Schwarzeck) MERIT 83 Struve 1860

Clarke 1880 (Arc 1950) New International 1967 Sphere (Unity)

Clarke 1880 (Merchich)
MI Pro for SQL Server/Functions Guide 169

Coordinate Transformation Reference Tables
Coordinate Units
The following table lists the coordinate units supported. These units (except the last three) are
also used for distance units.

 Note: The SQL Server implementation does not use coordinate IDs.

Datums
The datum is established by tying a reference ellipsoid to a particular point on the earth. The
following table lists:

• The number used to identify the datum (the same numbers used in MapInfo
Professional's MAPINFOW.PRJ file).

• The datums.

• The maps (area) where they are typically used.

• Their reference ellipsoid.

Table 3:

Meter Chain Indian Foot

Kilometer Rod Link (Benoit)

Centimeter Link Link (Sears)

Millimeter Decimal degree Chain (Benoit)

Mile Gon Chain (Sears)

Nautical Mile Grad Yard (Indian)

Survey foot Modified American Foot Yard (Sears)

Foot Clarke’s Foot Fathom

Inch Decimal second

Yard Decimal minute

Table 4:

Number Datum Area Ellipsoid

1 Adindan Ethiopia, Mali, Senegal, Sudan Clarke 1880
170 MI Pro for SQL Server/Functions Guide

Coordinate Transformation Reference Tables
2 Afgooye Somalia Krassovsky

3 Ain el Abd 1970 Bahrain Island International

4 Anna 1 Astro 1965 Cocos Islands Australian
National

5 Arc 1950 Botswana, Lesotho, Malawi, Swazi-
land, Zaire, Zambia, Zimbabwe

Clarke 1880

6 Arc 1960 Kenya, Tanzania Clarke 1880

7 Ascension Island 1958 Ascension Island International

8 Astro Beacon “E” Iwo Jima Island International

9 Astro B4 Sorol Atoll Tern Island International

10 Astro DOS 71/4 St. Helena Island International

11 Astronomic Station 1952 Marcus Island International

12 Australian Geodetic 1966
(AGD 66)

Australia and Tasmania Island Australian
National

13 Australian Geodetic 1984
(AGD 84)

Australia and Tasmania Island Australian
National

110 Belgium Belgium International

14 Bellevue (IGN) Efate and Erromango Islands International

15 Bermuda 1957 Bermuda Islands Clarke 1866

16 Bogota Observatory Colombia International

17 Campo Inchauspe Argentina International

18 Canton Astro 1966 Phoenix Islands International

19 Cape South Africa Clarke 1880

20 Cape Canaveral Florida and Bahama Islands Clarke 1866

21 Carthage Tunisia Clarke 1880

22 Chatham 1971 Chatham Island (New Zealand) International

23 Chua Astro Paraguay International

Table 4:

Number Datum Area Ellipsoid
MI Pro for SQL Server/Functions Guide 171

Coordinate Transformation Reference Tables
24 Corrego Alegre Brazil International

9999 Custom (see Appendix G)

1000 Deutsches Hauptdreick-
snetz (DHDN)

Germany Bessel

25 Djakarta (Batavia) Sumatra Island (Indonesia) Bessel 1841

26 DOS 1968 Gizo Island (New Georgia Islands) International

27 Easter Island 1967 Easter Island International

28 European 1950 (ED 50) Austria, Belgium, Denmark, Fin-
land, France, Germany, Gibraltar,
Greece, Italy, Luxembourg, Nether-
lands, Norway, Portugal, Spain,
Sweden, Switzerland

International

29 European 1979 (ED 79) Austria, Finland, Netherlands, Nor-
way, Spain, Sweden, Switzerland

International

108 European 1987 (ED 87) Europe International

30 Gandajika Base Republic of Maldives International

31 Geodetic Datum 1949 New Zealand International

32 Geodetic Reference Sys-
tem 1967 (GRS 67)

Worldwide GRS 67

33 Geodetic Reference Sys-
tem 1980 (GRS 80)

Worldwide GRS 80

34 Guam 1963 Guam Island Clarke 1866

35 GUX 1 Astro Guadalcanal Island International

36 Hito XVIII 1963 South Chile (near 53°S) International

37 Hjorsey 1955 Iceland International

38 Hong Kong 1963 Hong Kong International

39 Hu–Tzu–Shan Taiwan International

40 Indian Thailand and Vietnam Everest

41 Indian Bangladesh, India, Nepal Everest

Table 4:

Number Datum Area Ellipsoid
172 MI Pro for SQL Server/Functions Guide

Coordinate Transformation Reference Tables
42 Ireland 1965 Ireland Modified Airy

43 ISTS 073 Astro 1969 Diego Garcia International

44 Johnston Island 1961 Johnston Island International

45 Kandawala Sri Lanka Everest

46 Kerguelen Island Kerguelen Island International

47 Kertau 1948 West Malaysia and Singapore Modified Everest

48 L.C. 5 Astro Cayman Brac Island Clarke 1866

49 Liberia 1964 Liberia Clarke 1880

113 Lisboa (DLx) Portugal International

50 Luzon Philippines (excluding Mindanao
Island)

Clarke 1866

51 Luzon Mindanao Island Clarke 1866

52 Mahe 1971 Mahe Island Clarke 1880

53 Marco Astro Salvage Islands International

54 Massawa Eritrea (Ethiopia) Bessel 1841

114 Melrica 1973 (D73) Portugal International

55 Merchich Morocco Clarke 1880

56 Midway Astro 1961 Midway Island International

57 Minna Nigeria Clarke 1880

58 Nahrwan Masirah Island (Oman) Clarke 1880

59 Nahrwan United Arab Emirates Clarke 1880

60 Nahrwan Saudi Arabia Clarke 1880

61 Naparima, BWI Trinidad and Tobago International

109 Netherlands Netherlands Bessel

62 North American 1927
(NAD 27)

Continental US Clarke 1866

Table 4:

Number Datum Area Ellipsoid
MI Pro for SQL Server/Functions Guide 173

Coordinate Transformation Reference Tables
63 North American 1927
(NAD 27)

Alaska Clarke 1866

64 North American 1927
(NAD 27)

Bahamas (excluding San Salvador
Island)

Clarke 1866

65 North American 1927
(NAD 27)

San Salvador Island Clarke 1866

66 North American 1927
(NAD 27)

Canada (including Newfoundland
Island)

Clarke 1866

67 North American 1927
(NAD 27)

Canal Zone Clarke 1866

68 North American 1927
(NAD 27)

Caribbean (Turks and Caicos
Islands)

Clarke 1866

69 North American 1927
(NAD 27)

Central America (Belize, Costa
Rica, El Salvador, Guatemala,
Honduras, Nicaragua)

Clarke 1866

70 North American 1927
(NAD 27)

Cuba Clarke 1866

71 North American 1927
(NAD 27)

Greenland (Hayes Peninsula) Clarke 1866

72 North American 1927
(NAD 27)

Mexico Clarke 1866

73 North American 1927
(NAD 27)

Michigan (used only for State Plane
Coordinate System 1927)

Modified Clarke
1866

74 North American 1983
(NAD 83)

Alaska, Canada, Central America,
Continental US, Mexico

GRS 80

107 Nouvelle Triangulation
Francaise (NTF)

France Modified Clarke
1880

1002 Nouvelle Triangulation
Francaise (NTF) Green-
wich Prime Meridian

France Modified Clarke
1880

111 NWGL 10 Worldwide WGS 72

75 Observatorio 1966 Corvo and Flores Islands (Azores) International

Table 4:

Number Datum Area Ellipsoid
174 MI Pro for SQL Server/Functions Guide

Coordinate Transformation Reference Tables
76 Old Egyptian Egypt Helmert 1906

77 Old Hawaiian Hawaii Clarke 1866

78 Oman Oman Clarke 1880

79 Ordnance Survey of Great
Britain 1936

England, Isle of Man, Scotland,
Shetland Islands, Wales

Airy

80 Pico de las Nieves Canary Islands International

81 Pitcairn Astro 1967 Pitcairn Island International

1000 Potsdam Germany Bessel

36 Provisional South Chilean
1963

South Chile (near 53°S) International

82 Provisional South Ameri-
can 1956

Bolivia, Chile, Colombia, Ecuador,
Guyana, Peru, Venezuela

International

83 Puerto Rico Puerto Rico and Virgin Islands Clarke 1866

1001 Pulkovo 1942 Germany Krassovsky

84 Qatar National Qatar International

85 Qornoq South Greenland International

1000 Rauenberg Germany Bessel

86 Reunion Mascarene Island International

112 Rikets Triangulering 1990
(RT 90)

Sweden Bessel

87 Rome 1940 Sardinia Island International

88 Santo (DOS) Espirito Santo Island International

89 São Braz São Miguel, Santa Maria Islands
(Azores)

International

90 Sapper Hill 1943 East Falkland Island International

91 Schwarzeck Namibia Modified Bessel
1841

Table 4:

Number Datum Area Ellipsoid
MI Pro for SQL Server/Functions Guide 175

Coordinate Transformation Reference Tables
92 South American 1969 Argentina, Bolivia, Brazil, Chile,
Colombia, Ecuador, Guyana, Para-
guay, Peru, Venezuela, Trinidad,
and Tobago

South American
1969

93 South Asia Singapore Modified Fischer
1960

94 Southeast Base Porto Santo and Madeira Islands International

95 Southwest Base Faial, Graciosa, Pico, Sao Jorge,
Terceira Islands (Azores)

International

1003 Switzerland (CH 1903) Switzerland Bessel

96 Timbalai 1948 Brunei and East Malaysia
(Sarawak and Sabah)

Everest

97 Tokyo Japan, Korea, Okinawa Bessel 1841

98 Tristan Astro 1968 Tristan da Cunha International

9999 User–defined

99 Viti Levu 1916 Viti Levu Island (Fiji Islands) Clarke 1880

100 Wake–Eniwetok 1960 Marshall Islands Hough

101 World Geodetic System
1960 (WGS 60)

Worldwide WGS 60

102 World Geodetic System
1966 (WGS 66)

Worldwide WGS 66

103 World Geodetic System
1972 (WGS 72)

Worldwide WGS 72

104 World Geodetic System
1984 (WGS 84)

Worldwide WGS 84

105 Yacare Uruguay International

106 Zanderij Surinam International

Table 4:

Number Datum Area Ellipsoid
176 MI Pro for SQL Server/Functions Guide

	Table of Contents
	About Functions
	Overview
	Conventions
	Open GIS Consortium (OGC)
	Filter Tolerance
	Data Tolerance

	Aggregate Functions
	Function Descriptions
	HG_Aggspatial
	HG_Aggunion
	HG_Aggintersection
	HG_Aggconvex_Hull
	HG_Bounding_Box

	Cast Functions
	Function Descriptions
	HG_AsBinary
	HG_AsText
	HG_GeometryFromBinary
	HG_GeometryFromText

	Constructor Functions
	Function Descriptions
	Overview
	Dimension

	Constructor Formats
	The ST_Spatial Constructor Function
	ST_Spatial

	Geometry String Formats
	HG_Box
	HG_Circle – Two Points
	HG_Circle – Center Point and Radius
	HG_Circle – x, y, and Radius Values
	HG_Curve
	HG_Triangle
	HG_Quad
	ST_CircularArc
	ST_Path
	ST_Point
	ST_Polygon – Path of Lines
	ST_Polygon – Centroid
	ST_Polygon – Interior Boundaries
	ST_Polygon – Interior Boundaries and Centroid
	ST_Polyline

	Coordinate Functions
	Function Descriptions
	HG_CSTransform

	General Functions
	Function Descriptions
	HG_GetString
	HG_Morph_Out
	HG_Version

	Measurement Functions
	Function Descriptions
	HG_Azimuth
	HG_Azimuth_2pts
	HG_Distance
	HG_Height
	HG_Separation
	HG_Slope
	HG_Slope_2pts
	HG_Slope_Avg
	HG_Slope_Max
	HG_Slope_Min
	HG_SphericalDist
	HG_Width
	ST_Area
	ST_Length
	ST_Length_3D
	ST_Perimeter
	ST_Perimeter_3D

	Observer Functions
	Function Descriptions
	HG_Begin_Point
	HG_Cen_X
	HG_Cen_Y
	HG_Cen_Z
	HG_Center_Point
	HG_Corner
	HG_Curve
	HG_End_Arc_Rot
	HG_End_Point
	HG_End_Tangent
	HG_End_Tangent_P
	HG_Expanded
	HG_Exterior_Path
	HG_Extract_At
	HG_GeometryN
	HG_Interior_Path
	HG_Llb_X
	HG_Llb_Y
	HG_Llb_Z
	HG_Ncoords
	HG_Ncurves
	HG_Nitems
	HG_Npaths
	HG_Npoints
	HG_Npolygons
	HG_Nsubcurves
	HG_Ori_Rotation
	HG_Ori_X
	HG_Ori_Y
	HG_Ori_Z
	HG_Point
	HG_Pointdyn_Ori_X
	HG_Pointdyn_Ori_Y
	HG_Pointdyn_Rot
	HG_Pointdyn_Xscale
	HG_Pointdyn_Yscale
	HG_PointN
	HG_Radians
	HG_Start_Arc_Rot
	HG_Start_Tangent
	HG_Start_Tangent_P
	HG_Subcurve
	HG_Urt_X
	HG_Urt_Y
	HG_Urt_Z
	ST_X
	ST_Y
	ST_Z

	Spatial Functions
	Function Descriptions
	HG_Affine
	HG_Affine3D
	HG_As_Curves
	HG_As_Paths
	HG_As_Points
	HG_Center_In
	HG_Center_In_3D
	HG_Centroid
	HG_Clean
	HG_Clean_I
	HG_Clean_S
	HG_Combine
	HG_Connect
	HG_Convex_Hull
	HG_Difference
	HG_End_Of
	HG_Envelope
	HG_Erase
	HG_Erase_Outside
	HG_Filter
	HG_Filter_Curves
	HG_Filter_Paths
	HG_Filter_Points
	HG_Filter_Polygons
	HG_Intersect_In
	HG_LL_Circle
	HG_Split
	HG_Start_Of
	HG_Sym_Difference
	HG_Union
	ST_Adjacent
	ST_Buffer
	ST_Contain
	ST_Overlap
	ST_Transform
	ST_Transform3D

	Transformation Calculation
	Two Dimensional Calculation
	Three Dimensional Calculation

	Spatial Predicates
	Function Descriptions
	HG_Above
	HG_Assembled
	HG_At_End_Of
	HG_At_Start_Of
	HG_Below
	HG_Connected_To
	HG_Identical
	HG_Is_Box
	HG_Is_Circle
	HG_Is_CircularArc
	HG_Is_Closed
	HG_Is_Contiguous
	HG_Is_Curve
	HG_Is_Empty
	HG_Is_Forward
	HG_Is_HG_Curve
	HG_Is_Invalid
	HG_Is_Nulldir
	HG_Is_Path
	HG_Is_Point
	HG_Is_Polygon
	HG_Is_Polyline
	HG_Is_Quad
	HG_Is_Reverse
	HG_Is_Triangle
	HG_Is_Valid
	HG_Is_Znull
	HG_Level
	ST_Adjacent_To
	ST_Contained_By
	ST_Contains
	ST_Equals
	ST_Meets
	ST_Not_Equals
	ST_Outside
	ST_Overlaps
	ST_Within

	Using Coordinate Systems
	Performing Coordinate Transformations
	The SpatialWare.HG_SpatialRef Table

	OGC Well-Known Text
	Projected Coordinates
	Geographic Coordinates

	Coordinate Transformation Reference Tables
	Projections
	Spheroids/Ellipsoids
	Coordinate Units
	Datums

