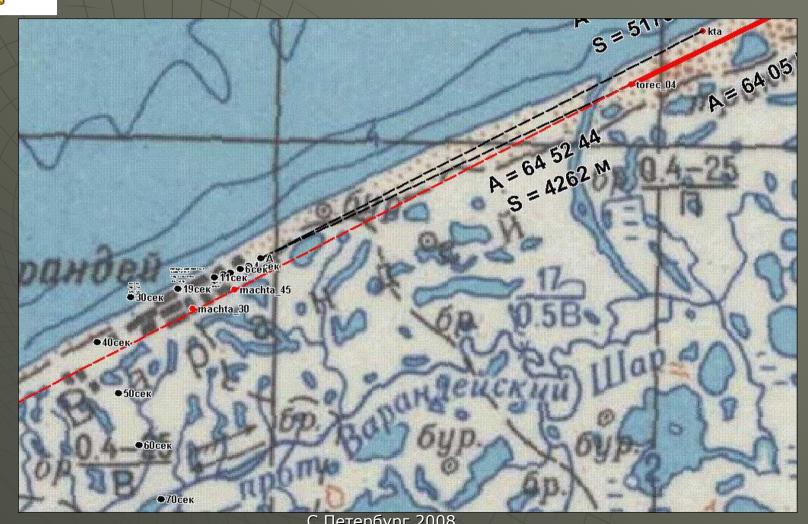

Национальные и международные системы координат, применяемые в гражданской авиации РФ

Лобазов В.Я. – Руководитель НИЦ «Геодинамика» МИИГАиК Рогозин В.П. – Начальник отдела 29 НИИ МО

В чем проблема?



Переход на навигацию по GNSS

Новые системы навигации – старые системы координат

С.Петербург 2008

Теоретические основы геодезического обеспечения аэронавигации

Физическая и математические поверхности

 Различия математических основ для традиционных и современных технологий

• Картографические проекции

 Современные технологии определения координат объектов в пространстве и во времени

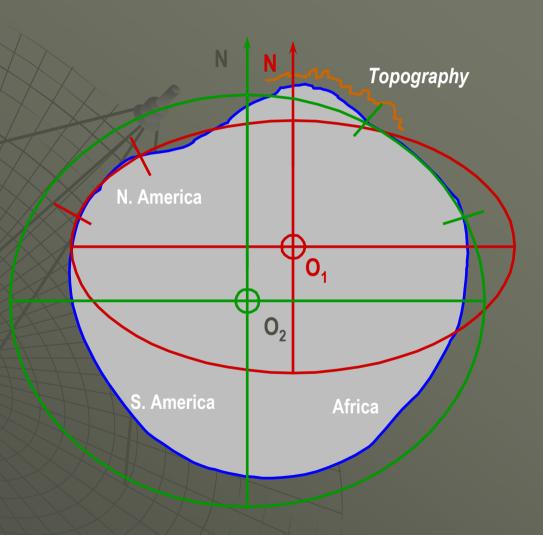
Модель геоида



Системы координат и высот в ГА

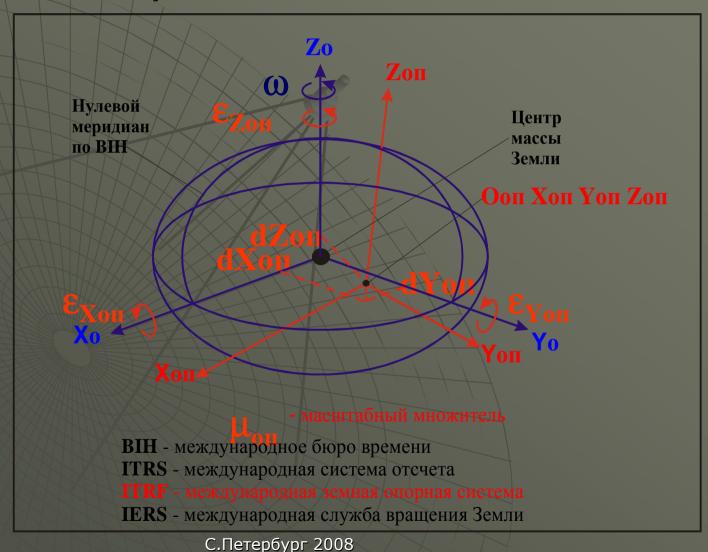
Гринвичьский меридиан Z нормальная земля GPS Q

МИЛИ АИЛ Геодинамика


- h= WGS84 высоты (c GPS)
- Ni=геод-эллипсоид расстояние
- -Hi=ортометрическая высота
- Н=уровенная высота

С.Петербург 2008

Общеземные и референцные системы координат


- Наземные геодезические измерения производятся на физической поверхности и привязаны к геоиду
- Спутниковый геодезические измерения привязаны к общеземном у эллипсоиду WGS84 или референц эллипсоиду П 3 9 0
- Проекты строятся на плоскости в соответствующих проекциях, обеспечивающих максимальное приближение физических элементов с их математическим отображением

С.Петербург 2008

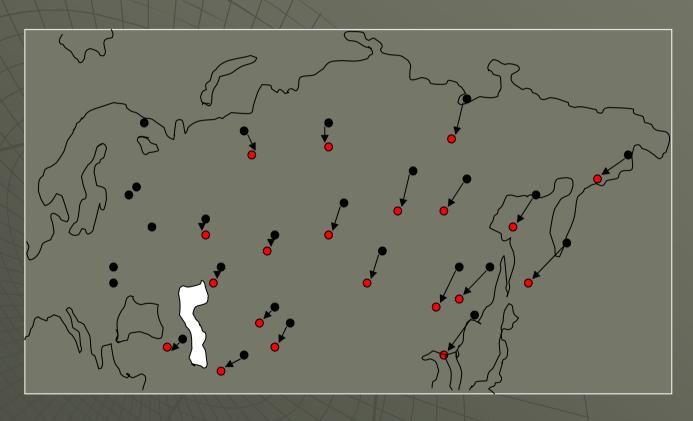
Геодезическая система осчета ОоХоҮоZо Опорная система ОопХопҮопZоп

Исторические аспекты. Государственные системы координат

Национальная система координат СК 32

• 1930 год. Переуравнивание геодезических сетей Европейской части России. Эллипсоид Бесселя. Исх. Пункт Саблино

Национальная система координат СК 42

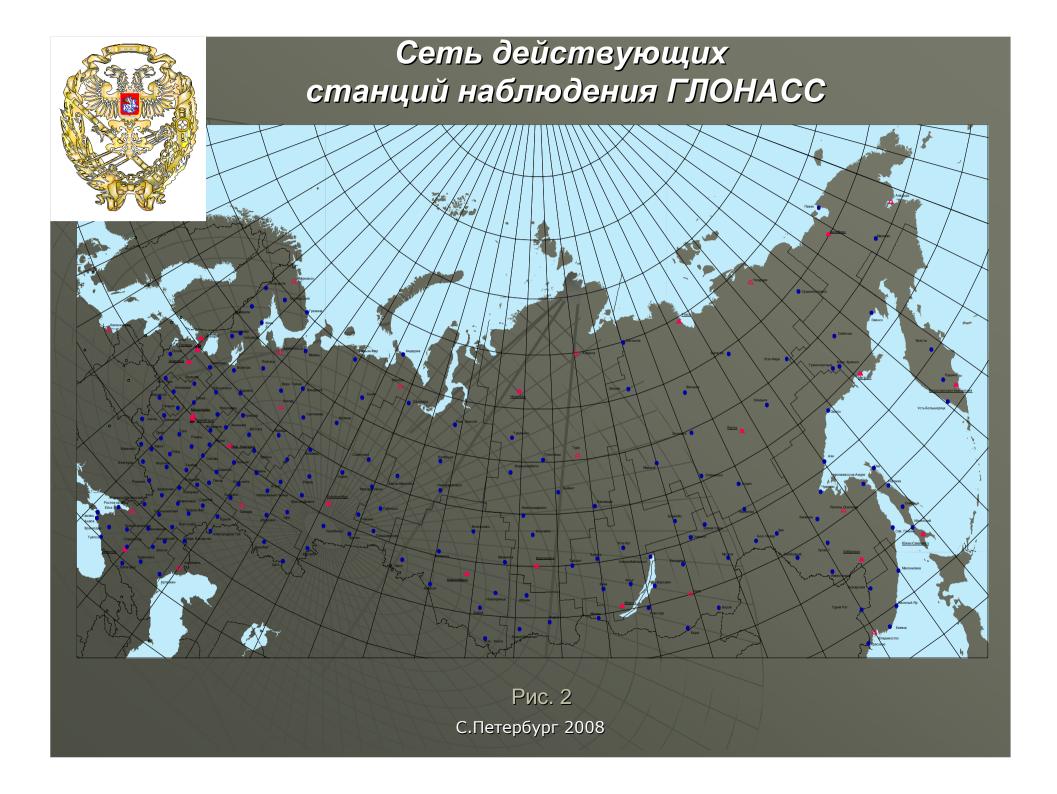

• 4 июня 1942. Переуравнивание геодезической сети всей страны. Эллипсоид Красовского. Большая полуось а = 6378245,0 м и обратное сжатие а = 298,3. Исх. пункт Пулково.

Национальная система координат СК 95

 28 июля 2000 года № 586. Совместное уравнивание Космической ГС, Доплеровской ГС, астрономогеодезической сети. Эллипсоид Красовского. Большая полуось а = 6378245,0 м и обратное сжатие а = 298,3. Исх. пункт Пулково

Схема расхождений координат СК-95 и СК-42

CK-95

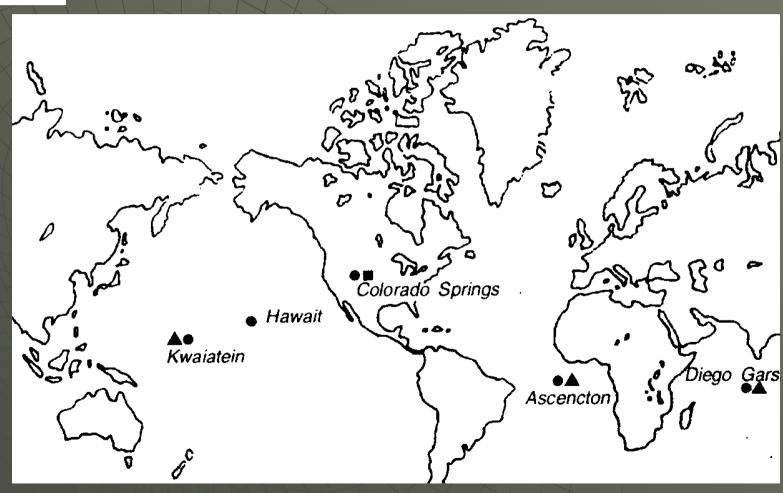

CK-42

10 м

Система геодезических параметров "Параметры Земли 1990 года" (ПЗ–90)

- Постановление Правительства Российской Федерации от 28 июля 2000 года № 568
- Закреплена пунктами космической геодезической сети.
 Точность отнесения системы к центру масс Земли порядка 1 м.
- За отсчетную поверхность в ПЗ-90 принят общий земной эллипсоид со следующими параметрами:
 - большая полуось 6378 136 м;
 - сжатие 1:298,257839.
 - гравитационная постоянная fM = 39860044 x107 м3/c2,
 - угловая скорость вращения Земли 7292115 x10-11 рад/с,
 - гармонический коэффициент геопотенциала второй степени J2, принят равным 108263x10-8.

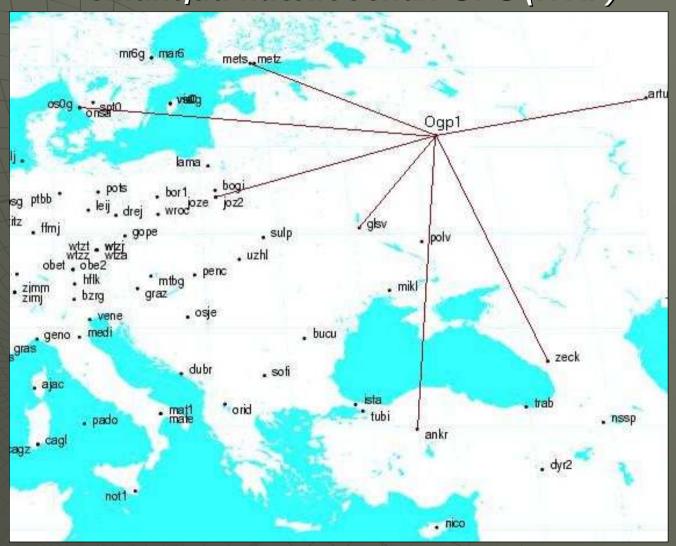
Сеть международных постоянно действующих станций наблюдения ГЛОНАСС



Система геодезических параметров WGS 84

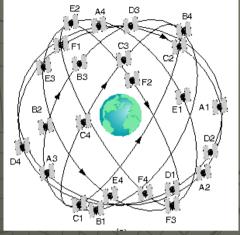
- Установлена Министерством обороны США в 1987 г.,
- Доплеровские наблюдения, полученные с помощью (Navy Navigation Satellite System NNSS) "ТРАНЗИТ".
- С 1994 г. реализация системы WGS-84 полностью основана на GPS-наблюдениях
- Последняя реализация WGS−84 (G873) относится к 0 ч. 00 м.
 29 сентября 1996 г
- (G873) определена относительно позиционных координат 15 станций слежения GPS
 - большая полуось -6 378 137.1 м;
 - *сжатие 1:298.257 223 563.*

Cemь постоянно действующих станций наблюдения GPS (WGS)

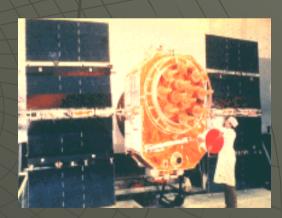


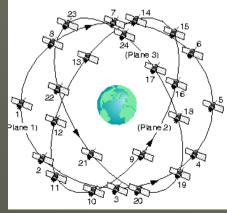
Система координат 1988 г. (ITRF88)

- В конце 80-х Международная служба вращения Земли (IERS) учредила ITRS с целью поддержки направлений, которые требуют высокоточных координат местоположения
- ◆ Ежегодно, начиная с момента появления системы ITRF88, служба IERS представляет новые версии ITRS – ITRF89, ITRF90,...
- ◆ Так система ITRF96 характеризуется положениями и скоростями изменения 508 станций на 290 глобально рассредоточенных пунктах



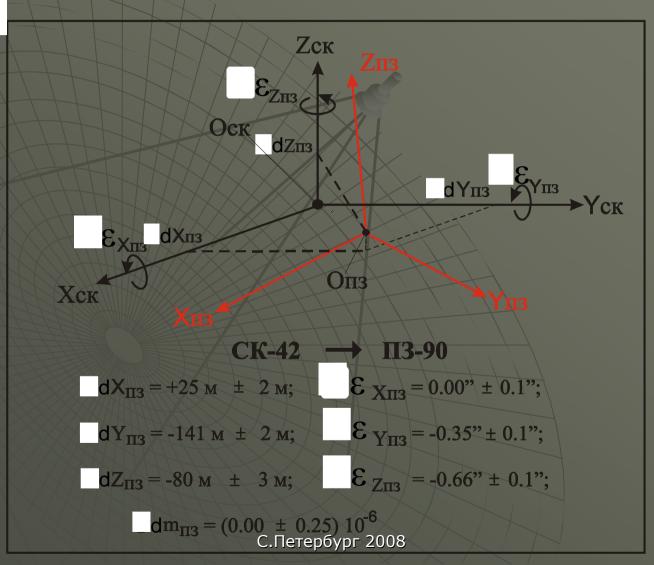
Cemь постоянно действующих станций наблюдения GPS (ITRF)


Технология спутникового позиционирования ГЛОНАСС/GPS



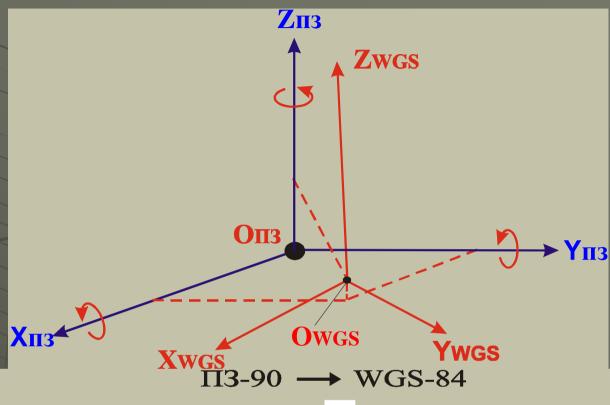
 Система GPS (США)
 – 24 спутника на б орбитах

• Система ГЛОНАСС (Россия) - 24 спутника на 3-х орбитах



Основные характеристики GPS и ГЛОНАСС

	GPS	ГЛОНАСС			
рактеристика					
	2	3			
Количество спутников	24	24			
Количество орбитальных плоскостей	6	3			
Угол наклона орбиты, (°)	55	65,8			
Радиус орбиты, (км)	26 560	25 510			
Период обращения, (час:мин)	11:58	11:16			
Характеристики сигнала, (МГц)	L ₁ =1575,42 L ₂ =1227,60	L_1 =(1602+0,5625*n) L_2 =(1246+0,4375*n), где n=124 – номер спутника			
Код	CDAM	FDAM			
	С/А код на L ₁	С/А код на L ₁			
	P на L ₁ и L ₂	${ m P}$ код на ${ m L}_1$ и ${ m L}_2$			
Частота кодов	С/А код 1,023	С/А код 0,511			
	Р ко 10,23	Р код 5,11			
Референц. система координат	WGS84	SG85			
Время	UTC (USNO) С.Петербург 20	UTS (SU)			



Параметры связи эллипсоидовСК-42 и ПЗ-90

Параметры связи ПЗ-90 и WGS-84

$$dX_{WGS} = -1.08 \text{ M} \pm 0.2 \text{ M}; \qquad \epsilon_{WGS} = 0$$

$$dY_{WGS} = -0.27 \text{ M} \pm 0.2 \text{ M};$$
 $\varepsilon_{WGS} = 0$

$$dZ_{WGS} = -0.90 \text{ M} \pm 0.3 \text{ M};$$
 $\varepsilon_{WGS} = -0.16" \pm 0.01";$

$$dm_{WGS} = (-0.12 \pm 0.06) 10^{-8}$$

Параметры связи между системами координат СК-95 и ПЗ-90

```
    XΠ3-90 = X1995 + ΔX0 ,
    YΠ3-90 = Y1995 + ΔY0 ,
    ZΠ3-90 = Z1995 + ΔZ0 ,
```

- где ΔХО, ΔΥО, ΔΖО линейные элементы ориентирования,
- $\Delta XO = +25,90 \text{ m}; \Delta YO = -130,94 \text{ m}; \Delta ZO = -81,76 \text{ m}.$

Параметры связи между системами координат СК-95 и WGS-84

•
$$\Delta X = +24.653 \text{ m}; \ \Delta Y = -129.136 \text{ m}; \ \Delta Z = -83.057 \text{ m};$$

*
$$\omega X = -0.06696"$$
; $\omega Y = +0.00391$, $\omega Z = -0.12902"$;

$$m = -0.175*10 - 6.$$

Система геодезических параметров, "Параметры Земли 1990 года" (ПЗ–90.02)

- 20.09.2007 спутники системы ГЛОНАСС переведены на новую систему координат
- С 21.09.2007 ИАЦ ГЛОНАСС рекомендует использовать нулевые параметры перехода между ПЗ 90.02 к ITRF 2000

Параметры связи между системами координат ITRF-2000 (WGS-84) и ПЗ 90.02

•
$$\Delta X = +0.36 \text{ m}; \Delta Y = -0.08 \text{ m}; \Delta Z = -0.18 \text{ m};$$

•
$$\omega X = 0.0''; \ \omega Y = 0.0'', \ \omega Z = -0.0'';$$

Разночтение по системам координат

			1					
WGS-84	45	5	39,843	N	37	22	55,194	E
П390	45	5	39,838	N	37	22	55,014	E
CK95	45	5	40,270	N	37	23	0,491	E
		Z						
CK42	45	5	40,351	N	37	23	0,384	E

