NCSA HDF
Specification and Developer's Guide

Version 3.2

September 1993

University of Illinois at Urbana-Champaign

READ ME NOW

NCSA Contacts

Disclaimer

Trademark
Acknowledgments

NCSA HDF Version 3.3 source code and documentation are in the public domain.
Specifically, we give to the public domain al rights for future licensing of the
source code, al resale rights, and all publishing rights.

We ask, but do not require, that the following message be included in all derived
works: Portions developed at the National Center for Supercomputing
Applications at the University of Illinois at Urbana-Champaign.

If you want to see more software like NCSA HDF, you need to send us a letter, email
or US mail, telling us what you are doing with NCSA HDF. We need to know: (1)
What science you are working on—an abstract of your work would be fine; and (2)
How NCSA HDF has helped you, for example, by increasing your productivity or
alowing you to do things you could not do before.

We encourage you to cite the use of NCSA HDF, and any other NCSA software you
have used, in your publications. A bibliography of your work would be extremely
hel pful.

NOTE: Thisisanew kind of shareware. Y ou share your science and successes with
us, and we can get more resources to share more software like NCSA HDF with you.

Mail user feedback, bugs, and software Send commmunications via electronic
and manual suggestions to: mail to one of the following:
NCSA Software Tools Group Bug Suggestions
HDF bugs@ncsa.uiuc.edu
152 Computing Applications Bldg. bugs@ncsavmsa.bitnet

E. ingfield Ave. L
?:?%mpasigg,n?l_leé%z\(l)e All Other Communications

softdev@ncsa.uiuc.edu
softdev@ncsavmsa.bitnet

THEUNIVERSITY OF ILLINOISGIVESNO WARRANTY, EXPRESSOR IMPLIED,
FOR THE SOFTWARE AND/OR DOCUMENTATION PROVIDED, INCLUDING,
WITHOUT LIMITATION, WARRANTY OF MERCHANTIBILITY AND WARRANTY
OF FITNESS FOR A PARTICULAR PURPOSE.

Macintosh and Macintosh Il are trademarks of Apple Computer Inc.
UNIX isaregistered trademark of AT&T.

CRAY and UNICOS are registered trademarks and CRAY -2 and CFT77 are trademarks
of Cray Research Inc.

IBM PC is aregistered trademark of International Business Machines Corporation.

MS-DOS is a registered trademark of Microsoft Corporation.

Sun is aregistered trademark and Sun Workstation and Sun System 3 are trademarks
of Sun Microsystems Inc.

Table of contents

Introduction
Overview Vi
Why HDF? vi
What is HDF? Vii
Some History I X
About This Document x

Conventions Used in This Document X1

Chapter 1 Basic Structure of HDF Files

Chapter Overview 1-1

File Header 1-1

Data Objects 1-1

Physical Organization of HDF Files 1-4
Sample HDF File 1-5

Chapter 2 Software Overview

Chapter Overview 2-1
HDF Software Layers 2-1
Software Organization 2-2

Some HDF Conventions 2-6

April 12, 1996 i

NCSA HDF Specification and Developer's Guide

Chapter 3 General Purpose Interface

Chapter Overview 3-1
Introduction 3-1

New Low Level Routines with Version 3.2
3-2

Overview of the Interface 3-2

Function Specifications 3-6

Chapter 4 Sets and Groups

Chapter Overview 4-1

Data Sets 4-1

Groups 4-2

Raster Image Sets (RIS) 4-5
Scientific Data Sets 4-8

Vsets, Vdatas, and Vgroups 4-14

The Raster-8 Set (Obsolete) 4-16

Chapter 5 Annotations

Chapter Overview 5-1
General Description 5-1
File Annotations 5-2

Object Annotations 5-2

Chapter 6 Tag Specifications

Chapter Overview 6-1

iv National Center for Supercomputing Applications

Introduction

The HDF Tag Space 6-1

Extended Tags and Alternate Physical Storage
Methods 6-1

Tag Specifications 6-7

Chapter 7 Portability Issues

Chapter Overview 7-1
The HDF Environment 7-1
Organization of Source Files 7-3

Passing Strings Between FORTRAN and C

7-5
Function Return Values between FORTRAN and
C 7-7
Differences in Routine Names 7-8

Differences Between ANSI C and Old C 7-10
Type Differences 7-11

Access to Library Functions 7-14

Appendix A Tag and Extended Tag Table

Tags A-1
Extended Tag Labels A-4

April 12, 1996 \Y;

| ntroduction

Overview

Why HDF?

The Hierarchical Data Format (HDF) was designed to be an easy,
straight-forward, and self-describing means of sharing scientific data
among people, projects, and types of computers. An extensible header
and carefully crafted internal layers provide a system that can grow as
scientific data-handling needs evolve.

This document, the NCSA HDF Specification and Developer’s Guide,
fully defines HDF and its interfaces, discusses criteriaemployed in its
development, and provides guidelines for devel opers working on HDF
itself or building applications that employ HDF.

Thisintroduction provides a brief overview of HDF capabilities and
design.

A fundamental requirement of scientific data management is the ability
to access as much information in as many ways, as quickly and easily
aspossible. A data storage and retrieval system that facilitates these
capabilities must provide the following features:

Support for scientific data and metadata
Scientific datais characterized by avariety of data typesand
representations, data sets (including images) that can be extremely
large and complex, and the need to attach accompanying attributes,
parameters, notebooks, and other metadata. Metadata,
supplementary data that describes the basic data, includes
information such as the dimensions of an array, the number type of
the elements of arecord, or a color lookup table (LUT).

Support for a range of hardware platforms
Data can originate on one machine only to be used later on many
different machines. Scientists must be able to access data and
metadata on as many hardware platforms as possible

Support for a range of software tools
Scientists need a variety of software tools and utilities for easily
searching, analyzing, archiving, and transporting the data and
metadata. These tools range from alibrary of routines for reading
and writing data and metadata, to small utilities that simply display
an image on a console, to full-blown database retrieval systems that
provide multiple views of thousands of sets of data and metadata.

April 12, 1996

Vi

Introduction

What is HDF?

The HDF Structure

Rapid data transfer
Both the size and the dispersion of scientific data sets require that
mechanisms exist to get the data from place to place rapidly.

Extendibility
As new types of information are generated and new kinds of science
are done, a means must be provided to support them.

HDF is a self-describing extensible file format using tagged objects that
have standard meanings. The ideaisto store both a known format
description and the data in the same file. HDF tags describe the format
of the data because each tag is assigned a specific meaning: the tag
DFTAG LUT standsfor color palette, thetag DFTAG Rl standsfor 8hit
raster image, and so on (see Figure 1). A program that has been written
to understand a certain set of tag types can scan the file for those tags
and process the data. This program also can ignore any datathat is
beyond its scope.

Figurel.1 Raster Image Set in an HDF File. The set has three data objects with different tags representing three
different types of data. The palette and dimension objects contain metadata.

— 31— [T
dimensions ——> | 400x600
raster image >

HDF Tags

The set of available data objects encompasses both primary data and
metadata. Most HDF objects are machine- and medium-independent,
physical representations of data and metadata.

The HDF design assumes that we cannot know a priori what types of
data objects will be needed in the future, nor can we know how
scientists will want to view that data. As science progresses, people
will discover new types of information and new relationships among
existing data. New types of data objects new tags will be created to
meet these expanding needs. To avoid unnecessary proliferation of tags
and to ensure that all tags are available to potential users who need to
share data, a portable public domain library is available that interprets
all public tags. Thelibrary contains user interfaces designed to provide
views of the data that are most natural for users. Aswe learn more
about the way scientists need to view their data, we can add user
interfaces that reflect data model s consistent with those views.

April 12, 1996

vii

NCSA HDF Specification and Developer’s Guide

Types of Data and
Structures

Backward and Forward
Compatibility

Calling Interfaces

HDF currently supports the most common types of data and metadata
that scientists use, including multidimensional gridded data, 2-
dimensiona raster images, polygonal mesh data, multivariate data sets,
finite-element data, non-Cartesian coordinate data, and text.

In the future there will almost certainly be a need to incorporate new
types of data, such as voice and video, some of which might actually be
stored on other media than the centra file itself. Under such
circumstances, it may become desirable to employ the concept of a
virtual file. A virtua file functions like a regular file but does not fit
our normal notion of a monolithic sequence of bits stored entirely on a
single disk or tape.

HDF also makes it possible for the user to include annotations, titles,
and specific descriptions of the datain the file. Thus, files can be
archived with human-readable information about the data and its origins

One coallection of HDF tags supports a hierarchical grouping structure
called Vset that allows scientists to organize data objects within HDF
filesto fit their views of how the objects go together, much as a person
in an office or laboratory organizes information in folders, drawers,
journal boxes, and on their desktops.

An important goal of HDF is to maximize backward and forward
compatibility among its interfaces. Thisis not always achievable,
because data formats must sometimes change to enhance performance,
to correct errors, or for other reasons. However, whenever possible,
HDF files should not become out of date. For example, suppose a site
falsfar behind in the HDF standard so its users can only work with the
portions of the specification that are three years old. Users at this site
might produce files with their old HDF software then read them with
newer software designed to work with more advanced datafiles. The
newer software should still be able to read the old files.

Conversely, if the site receives files that contain objects that its HDF
software does not understand, it should still be able to list the types of
datain thefile. It should also be able to access all of the older types of
data objects that it understands, despite the fact that the older types of
data objects are mixed in with new kinds of data. In addition, if the
more advanced site uses the text annotation facilities of HDF
effectively, the fileswill arrive with complete human-readable
descriptions of how to decipher the new tag types.

To present a convenient user interface made up of something more
usable than alist of tag types with their associated data requirements,
HDF supports multiple calling interfaces.

Thelow level calling interfaces are used to manipulate tags and raw
data, for error handling, and to control the physical storage of data.
These interfaces are designed to be used by developers who are providing
the higher level interfaces for applications like raster image storage or
scientific data archiving.

The application interfaces, at the next level, include several modules
specifically designed to simplify the process of storing and accessing

viii

National Center for Supercomputing Applications

Introduction

Machine Independence

Some History

specific types of data. For example, the palette interface is designed to
handle color palettes and lookup tables while the scientific data interface
is designed to handle arrays of scientific data. If you are primarily
interested in reading or writing data to HDF files, you will spend most
of your time working with the application interfaces.

The HDF utilities and NCSA applications, at the top level, are special
purpose programs designed to handle specific tasks or solve specific
problems. The utilities provide acommand line interface for data
management. The applications provide solutions for problemsin
specific application areas and often include a graphic user interface.
Several third party applications are also available at thislevel.

An important issue in data file design is that of machine independence
or transportability. The HDF design defines standard representations for
storing all data types that it supports. When datais written to afile, it
istypically written in the standard HDF representation. The conversion
is handled by the HDF software and need not concern the user. Users
may override this convention and install their own conversion routines,
or they may write data to afile in the native format of the machine on
which it was generated.

In 1987 agroup of users and software developers at NCSA searched for
afile format that would satisfy NCSA's data needs. There were some
interesting candidates, but none that were in the public domain, were
targeted to scientific data, and yet were sufficiently general and
extensible. In the course of several months, borrowing concepts from
several existing formats, the group designed HDF-.

Thefirst version of HDF was implemented in the spring and summer of
1988. It included a genera purpose interface and an 8-bit raster image
interface. In the fall of 1988, a scientific data set interface was designed
and implemented, enabling HDF users to store multidimensional arrays
and related data. Soon thereafter interfaces were implemented for storing
color palettes, 24-bit raster images, and annotations.

In 1989, it became clear that there was a need to support a general
grouping structure and unstructured data such as that used to represent
polyhedrain graphical applications. Thisled to Vsets, whose interface
routines were implemented as a separate HDF library.

Also in 1989 it became clear that the existing general purpose layer was
not sufficiently powerful to meet anticipated future needs and that the
coding could use a substantial overhaul. From this, the long process of
redesigning the lower layers of HDF began. Thefirst version
incorporating extended tags and the new lower layers of HDF was
released in the summer of 1992 as HDF Version 3.2.

Thisrelease, HDF Version 3.3, provides aternative physical storage
methods (external and linked block data elements) through extended
tags, JPEG data compression, changes to some Vset interface functions,

April 12, 1996

NCSA HDF Specification and Developer’s Guide

access to netCDF files through a complete netCDF interface, 1
hyperslab access routines for old-style SDS objects, and various
performance improvements.

About This Document

Document Contents

This document is designed for software devel opers who are designing
applications or routines for use with HDF files and for users who need
detailed information about HDF. Users who are interested in using HDF
to store or manipulate their data will not normally need the kind of
detail presented in this manual. They should instead consult one of the
user-level documents:
Versions 3.2 and earlier
NCSA HDF Calling Interfaces and Utilities
NCSA HDF Vset
Version 3.3
Getting Started with NCSA HDF
NCSA HDF User’s Guide
NCSA HDF Reference Manual
Someone using third-party software that uses HDF may also have to
consult amanual for that software.

The NCSA HDF Specification and Developer’ s Guide contains the
following chapters and appendix:

Chapter 1: Basic Structure of HDF Files
Introduces and describes the components and organization of HDF
files

Chapter 2: Software Overview
Describes the organization of the software layers that make up the
basic HDF library and provides guidelines for writing HDF
software

Chapter 3: General Purpose Interface
Describes the low level HDF routines that make up the genera
purpose interface

Chapter 4: Sets and Groups
Explains the roles of sets and groupsin an HDF file, and describes
raster image sets, scientific data sets, and Vsets

Chapter 5: Annotations
Explains the use of annotations in HDF files

Chapter 6: Tag Specifications
Describes the tag identification space, the extended tag structure,
and all of the NCSA-supported tags

Chapter 7: Portability |ssues
Describes the measures taken to maximize HDF portability across
platforms and to ensure that HDF routines are available to both C
and FORTRAN programs

1 NetCDFisa network-transparent derivative of the original CDF (Common Data Format) developed by the
National Aeronautics and Space Administration (NASA). It is used widely in atmospheric sciences and
other disciplines requiring very large data structures. NetCDF is in the public domain and was
developed at the Unidata Program Center in Boulder, Colorado.

National Center for Supercomputing Applications

Introduction

Appendix A: Tags and Extended Tag Labels
Presents a list of NCSA-supported HDF tags and a list of labels
used with extended tags

Conventions Used in This Document

Most of the descriptive text in thisguide is printed in 10 point New
Century Schoolbook. Other typefaces have specific meanings that will
help the reader understand the functionality being described.

New concepts are sometimes presented in italics on their first
occurrence to indicate that they are defined within the paragraph.

Cross references within the specification include the title of the
referenced section or chapter enclosed in quotation marks. (E.g., See
Chapter 1, "The Basic Structure of HDF Files," for a description of the
basic HDF file structure.)

References to documents italicize the title of the document. (E.g., See
the guide Getting Started with NCSA HDF to familiarize yourself with
the basic principles of using HDF.)

Literal expressions and variables often appear in the discussion. Literal
expressions are presented in Courier while variables are presented in
italic Courier. A literal expression is any expression that would be
entered exactly as presented, e.g., commands, command options, literal
strings, and data. A variableis an expression that serves as a place
holder for some other text that would be entered. Consider the
expression cp filel file2. cpisacommand nameand would be
entered exactly asit appears, so it is printed in bold Courier. But
filel and file2 arevariables, place holdersfor the names of real
files, so they are printed initalic bold Courier; the user would enter the
actual filenames.

This guide frequently offers sample command lines. Sometimes these
are examples of what might be done; other times they are specific
instructions to the user. Command lines may appear within running
text, asin the preceding paragraph, or on a separate line, as follows:

cp filel file2

Command lines always include one or more literal expressions and may
include one or more variables, so they are printed in Courier and italic
Courier as described above.

Keysthat are labeled with more than one character, such asthe
RETURN key, are identified with all uppercase letters. Keysthat are to
be pressed simultaneously or in succession are linked with a hyphen.
For example, “press CONTROL-A" means to pressthe CONTROL key
then, without releasing the CONTROL key, press the A key.

Similarly, “press CONTROL-SHIFT-A “ meansto press the
CONTROL and SHIFT keys then, without releasing either of those,
pressthe A key.

Table 1.1 summarizes the use of typefaces in the technical discussion
(i.e., everything except references and cross references).

April 12, 1996

Xi

NCSA HDF Specification and Developer’s Guide

Tablel.1 Meaning of entry format notations

Type Appearance Example Entry Method

Literal expression Courier dothi s Enter the expression exactly as it

(commands, literal appears.

strings, data)

Variables Italic Courier fil enane Enter the name of the file or the
specific data that this expression
represents.

Specia keys Uppercase RETURN Press the key indicated.

Key combinations Uppercase with CONTROL-A While holding down the first one or

hyphens between key two keys, press the last key.
names

Program listings and screen listings are presented in a boxed display in
Courier type such asin Figure 1.2, “Sample Screen Listing.” When the
listing is intended as a sample that the reader will use for an exercise or
model, variables that the reader will change are printed in italic Courier.

Figurel.2 Samplescreen listing

nmars_53%Ils -F

M niaxer /

mars_54% cd M nMaxer
nmars_55%Is -F

I'i st. M nNaxer
mars_56% cd m nnaxer
nmars_57%Ils -F

net . source

m nmaxer . v1. 04/

.v1.04

COPYR GHT m nmaxer . bi n/ sour ce. m nmaxer /

READMVE sanpl e/ source. triangul ati on/

nars 58%

Xii National Center for Supercomputing Applications

Chapter

Basic Structure of HDF Files

Chapter Overview

File Header

Note: To ensure portability,

the programmer must ensure

that the hexadecimal value in

an HDF file header is written in
big-endian order.

Data Objects

Figurel.l Two Data Objects

This chapter introduces and describes the components and organization
of Hierarchical Data Format (HDF) files.

The first component of an HDF fileis the file header (FH), which takes
up the first four bytesin an HDF file. The file header is a signature that
indicates that the file is an HDF file. Specifically, it is a 32-bit magic
number with the hexadecimal value 0e031301.

HDF assumes big-endian order in reading and writing files. The order of
bytesin the file header might be swapped on some machines when the
HDF file header is written, causing these characters to be written in
little-endian order. To maintain HDF file portability when developing
software for such machines, you must make sure the characters are read
and written in the exact order shown.

The basic building block of an HDF file is the data object, which
contains both data and information about the data. A data object hastwo
parts: a 12-byte data descriptor (DD) and a data element. Figure 1.1
illustrates two data objects.

Data Descriptors Data Elements

‘Rank and dimensions ‘ ﬂ‘_—) 2; 90 by 100

‘ Data

\4—) 63.2, 54.5 12.3,

18.2, 103.6, -7.4,

12.1, 6.9, 83.6,

As the names imply, the data descriptor provides information about the
data; the data element isthe dataitself. In other words, al datain an

April 12, 1996

1-1

NCSA HDF Specification and Developer’s Guide

HDF file has information about itself attached to it. In this sense, HDF
files are self-describing files.

Data Descriptor (DD) A datadescriptor (DD) has four fields: a 16-bit tag, a 16-bit reference
number, a 32-bit data offset, and a 32-bit data length. These are depicted
in Figure 1.2 and are briefly described in Table 1.1. Explanations of
each part appear in the paragraphs following Table 1.1.

Figurel.2 A Data Descriptor (DD)

Tag Reference Offset Length
number
16 bits 16 bits 32 bits 32 bits
Tag/ref
(data identifier)
Tablel.1 Parts of a Data Descriptor
Part Description
Tag/ref Unique identifier for each data element
(dataidentifier) Tag Type of datain a data element
Reference Number distinguishing data element from
number others with the same tag
Offset Byte offset of data element from beginning of file
Length Length of data element

Tag/ref (Data |dentifier)

Note: Only the full tag/ref A tag and its associated reference number (abbreviated as tag/ref)
uniquely identifies a data uniquely identify a data element in an HDF file. The tag/ref
element. combination is aso known as a data identifier.

Tag

A tag isthe part of a data descriptor that tells what kind of datais
contained in the corresponding data element. A tag is actually a 16-bit
unsigned integer between 1 and 65535, but every tag isalso given a
name that programs can refer to instead of the number. If aDD has no
corresponding data element, itstagis DFTAG_NULL, indicating that no
datais present. A tag may never be zero.

Tags are assigned by NCSA as part of the specification of HDF. The
following ranges are to be used to guide tag assignment:

00001 — 32767 reserved for NCSA use

32768 — 64999 user-definable

65000 — 65535 reserved for expansion of the format

Chapter 6, “Tag Specifications,” provides full specifications for all
currently supported HDF tags. Appendix A, “ Tags and Extended Tag
Labels,” lists the current tag assignments. See the section “ Some HDF
Conventions’ in Chapter 2, “ Software Overview,” for more information
on alocating tags.

1-2 National Center for Supercomputing Applications

Basic Structure of HDF Files

Note: All offsets are from the
beginning of the file; they are
not relative.

DD Blocks

Reference Number

Tags are not necessarily unique in an HDF file; there may be more than
one data element of agiven type. Therefore, each tag is associated with
aunique reference number in the data descriptor.

Reference numbers are not necessarily assigned consecutively, so you
cannot assume that the actual value of areference number has any
meaning beyond providing away of distinguishing among elements
with the sametag. Furthermore, reference numbers are only unique for
data elements with the same tag; two 8-hit raster images will never
have the same reference number but an 8-bit raster image and a 24-bit
raster image might.

Reference numbers are 16-bit unsigned integers.

Data Offset and Length

The data offset states the byte position of the corresponding data
element from the beginning of the file. The length states the number of
bytes occupied by the data element.

Offset and length are both 32-bit unsigned integers.

Data descriptors are stored physically in alinked list of blocks called
data descriptor blocks or DD blocks. Theindividua components of a
DD block are depicted in Figure 1.3. All of the DDsin a DD block are
assumed to contain significant data unless they have the tag
DFTAG_NULL (no data).

In addition to its DDs, each data descriptor block has a data descriptor
header (DDH). The DDH hastwo fields: a block size field and a next
block field. The block size field is a 16-bit unsigned integer that
indicates the number of DDsin the DD block. The next block field isa
32-bit unsigned integer giving the offset of the next DD block, if there
isone. The DDH of the last DD block in the list containsa 0 in its
next block field.

Figure1l.3 Model of a Data Descriptor Block

%'i(z)g_k k’,\fgétk Tag | Ref |Offset(Length |Tag | Ref |Offset|Length| Tag | Ref |Offset|Length |-
< DDH > |«—— DD > |< DD >| < DD >|
< DD Block

Data Element

Since the default number of DDsin a DD block is defined when the
HDF library is compiled, changing the default requires recompilation.

A data element is the raw data portion of a data object. Its datatype can
be determined by examining itstag, but other interpretive information
may be required before it can be processed properly.

April 12, 1996

1-3

NCSA HDF Specification and Developer’s Guide

Exceptions

Each data element is stored as a set of contiguous bytes starting at the
offset and with the length specified in the corresponding DD.1

Note that the data object identified by thetag DFTAG _MT does not
adhere to the standards described above; it consists of the tag
immediately followed by four number types. Since there can be only
one DFTAG M tagin an HDFfile, thereis no need for areference
number. Since all the data can be stored in the DD with the tag, there
isno need for adata el ement and the offset and length are unnecessary.

Several other tags, such as DFTAG NULL and DFTAG JPEG serveas
binary flags and convey all the required information by the mere fact of
their presencein an HDF file. These tags therefore point to no data
element and have offset and length values of 0. Consider these
examples: DFTAG NULL indicates a data object containing no data;
DFTAG_JPEG indicates that an associated data object, indicated by
another tag, contains a JPEG dataimage. The descriptions of these tags
include asink pointer (=)in the diagrams in Chapter 6.

See the related entries in Chapter 6, “ Tag Specifications,” for a
complete descriptions of these tags.

Physical Organization of HDF Files

Thefile header, DD blocks, and data elements appear in the following
order in an HDF file:

File header

First DD block

Data elements

If necessary, more DD blocks, more data elements, etc.

These relationships are summarized in Table 1.2.

The only rule governing the distribution of DD blocks and data
elements within afile is that the first DD block must follow
immediately after the file header. After that, the pointersin the DD
headers connect the DD blocksin alinked list and the offsetsin the
individual DDs connect the DDs to the data elements.

Table1.2 Summary of the Relationships among Parts of an HDF File

Part

Constituents

HDF file
FH

DD block
DDH

DD

Data

FH, DD block, data, DD block, data, DD block, data...
0x0e031301 [32-bit HDF magic number]

DDH, DD, DD, DD, ...

Number of DDs [16 bits], offset to next DD block [32 bits]
Tag [16 hits], ref [16 bits], offset [32 bits], length [32 bitg]
Data element, data el ement, data element ...

FH =file header, DD = data descriptor, DDH = DD header

1 Some HDF software provides the capability of storing objects as a series of linked blocks or external
elements, but this occurs at a higher level. At the lowest level each object with a tag/ref is stored

contiguously.

14

National Center for Supercomputing Applications

Basic Structure of HDF Files

Sample HDF File

We are now ready to examine a sample file. Consider an HDF file that
contains two 400-by-600 8-bit raster images as described in Table 1.3.

Table1.3 Sample Data Objectsin an HDF File

Tag Ref Data
DFTAGFD | 1 Fileidentifier: user-assigned title for file
DFTAG_FD 1 File descriptor: user-assigned block of text describing overall file contents
DFTAG LUT | 1 | Image paette (768 bytes)
DFTAGID 1 | x- and y-dimensions of the 2-dimensional arrays that contain the raster
images (4 bytes)
DFTAG R 1 | First 2-dimensional array of raster image pixel data (x*y bytes)
DFTAG R 2 Second 2-dimensional array of pixel data (also x*y bytes)

Assuming that a DD block contains 10 DDs, the physical organization
of the file could be described by Figure 1.5.

In thisinstance, the file contains two raster images. The images have
the same dimensions and are to be used with the same pal ette, so the
same data objects for the paette (DFTAG | P8) and dimension record
(DFTAG | D8) can be used with both images.

Figure15 Physical Representation of Data Objects

Section Item Offset | Contents
Header FH 0 0e031301 (HDF magic number, in hexadecimal)
DD block DDH 4 10 O
DD 10 DFTAGFID 1 130 4
DD 22 DFTAG FD 1 134 41
DD 34 DFTAG LUT 1 175 768
DD 46 DFTAGID 1 943 4
DD 58 DFTAG R 1 947 240000
DD 70 DFTAG R 2 240947 240000
DD 82 DFTAG NULL (Empty)
DD 94 DFTAG NULL (Empty)
DD 106 DFTAG NULL (Empty)
DD 118 DFTAG NULL (Empty)
Daa Daa 130 sw3
Data 134 solar wind similation: third try. 8/8/88
Data 175 e (Data for the image pal ette)
Data 943 400 600 (Image dimensions)
Data 947 e (Data for the first raster image)
Data 240947 | (Data for the second raster image)

April 12, 1996 1-5

Chapter

Software Overview

Chapter Overview

This chapter describes the HDF software organization and provides
guidelines for writing HDF software.

HDF is an amalgam of code and functionality from many sources. For
example, the netCDF code came from the Unidata Program Center, and
data compression and conversion software has been acquired from a
variety of third parties. NCSA staff wrote the code for the basic HDF
functionality and perfomed all of the integration work.

This document contains specifications for the NCSA-devel oped code and
functionality. It does not include specifications for code or
functionality from non-NCSA sources, though it does sometimes refer
to specifications provided by other sources. Only the HDF interface to
such code is specified in this document.

HDF Software Layers

There are three basic levels of HDF software:
e TheHDF low level interface

» The HDF application interfaces

» HDF applications and utilities

The lowest layer, the low level interface, includes general purpose
routines that form the basis of al higher-level HDF development. The
low level routines directly execute functions such asfile 1/O, error
handling, memory management, and physical storage.

The application interfaces support higher level views of data and provide
the interfaces for building user-level applications. Routinesto handle
raster images, palettes, annotations, scientific data sets, Vdatas and
netCDF appear at thislevel.

The applications and utilities are implemented at the highest level.
NCSA utilities, NCSA applications, and third party applications are all
implemented at this level.

The utilities perform general functions, such as listing the contents of
an HDF file, and more specialized functions, such as converting data
from one HDF data type to another (e.g., raster imagesto scientific data
sets). In general, the utilities have simple command line interfaces and
perform data management tasks.

The applications usually perform data analysis tasks and have polished
interactive user interfaces. They include the NCSA Visualization Tool

April 12, 1996

2-1

NCSA HDF Specification and Developer’s Guide

Suite, commercial software packages that use HDF, and other packages
created at NCSA and by various third party projects.

Figure 2.1 illustrates this layered implementation.

Figure2.1. HDF Software Layers 1

‘ HDF Utilities g ‘ NCSA Applications g ‘ 3rd Party Applications g

HDF Application Interfaces
P P P P P

4 J J U J C

‘ HDF Low Level Interfaces ‘ ‘

gl gl
J J 3
\ HDF File g

The general purpose interfaces are described in detail in this document.
The application interfaces and command line utilities are described in
the document NCSA HDF Calling Interfaces and Utilities for Versions
3.2 and earlier and in the NCSA HDF User’s Guide and NCSA HDF
Reference Manual for Version 3.3. Other HDF-based software tools
should have their own manuals.

Since the NCSA user community writes programs primarily in C and
FORTRAN, all of the HDF application interfaces developed at NCSA
are calable from both C and FORTRAN programs. Since the general
purpose interface is primarily for program devel opment, not for
applications, it provides C-callable routines only.

Software Organization

Versions and Release Since HDF is under continual development, new releases are
Numbers periodically made available. Each new release of the HDF library is
identified by a version number.

The version number consists of three elements:
maj orv Magjor version number
m norv Minor version number

rn Release number
The version number is presented in the following format:
majorv. minorvrrn (e.g., Version 3.2r1)

These elements are interpreted as follows:

Major version number
A new major version number is assigned when there is some
fundamental difference between anew version of thelibrary and the

1 Thisis a simplified illustration of the HDF software layers. Though the basic principles illustrated here continue to apply,
the introduction of netCDF and multiple-file HDF data structures renders the implementation considerably more complex.

2-2 National Center for Supercomputing Applications

HDF Software Overview

ANSI C and Portability

Modules and Interfaces

previous version. When anew major version is released, HDF users
and devel opers are strongly encouraged to obtain the new source code
and documentation. There will probably be added functionality in
successive mgjor versions of the library and some obsol ete code may
be deleted. Some user code may have to be modified to use the new

library.

Minor version number
A new minor version number indicates an intermediate release
between one major version and the next. Changes will probably be
significant. When a new minor version is released, users and
developers are strongly encouraged to obtain the new source code and
documentation.

Release number
A new release number is assigned when bug fixes or other small
modifications have been made. Using a new release of the same
version of the library will not usually require modifying existing
user code.

To ensure that HDF can be easily ported to new platforms, all versions
of the HDF source code from Version 3.2 on will be writtenin ANS
standard C, with special provisions for non-ANSI compilers. For more
information about porting HDF and writing portable HDF-based code,
refer to Chapter 7, "Making HDF Portable."

The HDF distribution contains many source files or modules that can
be grouped into families. For example, df p. c, df pf.c,and df pff.f
all sharetheroot name df p and, therefore, al belong to the df p
family. In general, each family of source modules represents one HDF
applicationsinterface; the df p family represents the HDF Palette
Interface. Exceptions to this rule will be discussed later in this section.

For each interface, there is necessarily onefile that contains the C code
that provides the basic functionality of that interface. But some
interfaces may have one or two additional code modulesthat provide
FORTRAN callahility for the interface, so families may have one, two,
or threefiles:

1file Modulesof thissort are generally not calling interfaces
themselves; they provide useful support functions for actual
calling interfaces. Since they are not meant to be called by any
routine outside the HDF library, they do not need to be
FORTRAN-callable. Example: hbl ocks. c iscaled only by
internal HDF routines and has only the C-callable interface.

2files Although there are currently no two-file families, it is
conceivable (and desirable) that some future interface will need
only one extra source module to provide FORTRAN
compatibility. If this were to happen, there would only be two
source modules for the interface. Example: df new. ¢ and
df newf . ¢ would make up the New Interface.

3files Most current implementations of FORTRAN-callable HDF
interfaces require that character string arguments be passed to
some of their functions. Due to differencesin the way C and

April 12, 1996

2-3

NCSA HDF Specification and Developer’s Guide

Header Files

FORTRAN represent strings, passing strings requires that
there be a small amount of special purpose FORTRAN code
written for each function that takes a string argument.

Therefore, most FORTRAN-callable HDF interfaces consist of
three source modules:

e The primary C module

* A FORTRAN-cdlable C module

A FORTRAN module
Example: df sd. ¢, df sdf.c,and df sdff.f makeupthe
Scientific Data Set Interface. df sd. ¢ containsthe basic
functionality of theinterface. df sdf. ¢ providesthe major
part of FORTRAN callability. And df sdf f. f containsthe
special purpose FORTRAN code that enables passing character
string arguments.

In addition to the source code modul es discussed above, some interfaces
also have C header files associated with them that are meant to be
included by C applications programmers with the #i ncl ude
preprocessor directive. They contain useful constants and data structures
for interaction with the interface from C programs. The header files can
be identified by the same name as the root name for the rest of the
family withthe . h extension. For example, df sd. h isthe header file
for the Scientific Data Set Interface.

Of particular importance among the C header filesare hdf . h and

hdfi . h:

hdf.h Contains al the symbolic constants and public data structures

required by HDF. hdf. h should be included by any program

that uses any of these constants or data structures.

hdfi . h Contains specific portability information about each platform
onwhich HDF issupported. hdfi.h i s automaticaly
included in programswhen hdf . h isincluded, so
programmers need not explicitly includeit.

Refer to Chapter 7, “Making HDF Portable,” for more information on

hdfi . h and other portability issues.

By way of illustration, Table 2.1 lists selected families of source code
modules and header files from of HDF Version 3.3.

Table2.1 Sample HDF Version 3.3 Source Code M odules
General General Grouping | Utilities | Annota- | General Scientific | Vsets
headers purpose (non-Vset) tions rasters data sets
hdf . h hfile.c df group. c dfutil.c dfan.c dfgr.c dfsd.c vg. C
hdfi.h hfilef.c df group. h dfutilf.c |dfanf.c |dfgr.h dfsdf.c vgf.c
hproto. h hfileff.f dfutilff.f | dfanff.f | df conp.c df sdf f . f voff. f
dfivns. h hkit.c dfutil.h dfan. h df i ntonp. ¢ | df sd. h vip.c
hbl ocks. c dfrig.h vgi . h
hextelt.c vio.c
herr.c vconv. ¢
herrf.c vparse.c
hfile.h VIW C
herr.h vsfld.c
vg. h
vproto. h
2-4 National Center for Supercomputing Applications

HDF Software Overview

The HDF Test Suite

Sample HDF Programs

In addition to the source code for the HDF library, versions 3.2 and
higher include atest suite. There are two test modules: one for C and
one for FORTRAN. Each module tests all of the routinesin all of the
application interfaces and in the general purpose interface. The exact
form of these test modules may vary from one release to the next;
consult the release code and online test documentation for details.

Every effort has been made to ensure that the test programs provide a
thorough and accurate assessment of the health of the HDF library.
Although the test suite will greatly improve the reliability of HDF
code, it is amost inevitable that some parts of the code will remain
untested. Therefore, no guarantees can be made on the basis of test suite
performance.

Each HDF release includes several sample programs to help users write
HDF programs. They illustrate some of the common techniques
employed by HDF programmers.

Some HDF Conventions

Naming and Assigning
Tags

The HDF specification described in the previous chapter is not
sufficient to guarantee its success. It is aso important that HDF
programmers and users adhere to certain conventions. Some guidelines
areimplicit in the discussions in other sections of this document.
Others are presented in the document NCSA HDF Calling Interfaces and
Utilities (for Versions 3.2 and earlier) or in the NCSA HDF User’s
Guide and NCSA HDF Reference Manual (for Version 3.3).

Guidelines not covered elsewhere are introduced in this section.

Tagsthat are to be made available to a genera population of HDF users
should be assigned and controlled by NCSA. Tags of thistype are given
numbersin the range 1 to 32,767. If you have an application that fits
this criterion, contact NCSA at the address listed in the front matter at
the beginning of this manual and specify the tags you would like. For
each tag, your specifications should include a suggested name,
information about the type and structure of the data that the tag will
refer to, and information about how the tag will be used. Y our
specifications should be similar to those contained in Chapter 6, “ Tag
Specifications.” NCSA will assign a set of tags for your application
and will include your tag descriptions in the HDF documentation.

Tagsin the range 32,768 to 64,999 are user-definable. That is, you can
assign them for any private application. If you use tags in this range,
be aware that they may conflict with other people's private tags.

April 12, 1996

2-5

NCSA HDF Specification and Developer’s Guide

Using Reference Numbers
to Organize Data Objects

Note: Users are discouraged
from assigning any meaning to
reference numbers beyond
that imparted by the HDF

library.

Multiple References

The HDF library itself uses reference numbers solely to distinguish
among objects with the same tag. While application programmers may
find it convenient to impart some meaning to reference numbers, they
should be forewarned that the HDF library will be ignorant of any such
meaning.

Multiple references to a single data element are quite common in HDF.
The general purposeroutine Hdupdd generates anew reference to data
that is already pointed to by another DD. If Hdupdd is used several
times, there may be several DDs that point to the same data element.

It isimportant to note that when a multiply-referenced data element is
deleted or moved, the various DDs that previously pointed to the data
element are not automatically deleted or adjusted to point to the data
element in its new location. Consequently, each DD to be deleted or
moved should be checked for multiple references and handled

appropriately.

2-6

National Center for Supercomputing Applications

Chapter General Purpose Interface

Chapter Overview

This chapter provides a detailed description of the routines that make
up the HDF general purpose interface.

I ntroduction

HDF supports several interfaces which can be categorized as high level
and general purpose interfaces:

» Highlevel interfaces support utilities and applications.

* General purpose interfaces perform basic operations on HDF files.
These levels areillustrated in Figure 3.1, “HDF Software Layers.”

Figure3.1. HDF SoftwareLayers

z pd z
HDF Utilities g | NCSA Applications g | 3rd Party Applicationsg

HDF Application Interfaces
gl gl gl gl g

HDF Low Level Interfaces
|l A
RN U } ,
HDF File |J

This chapter is concerned only with the general purpose routines.

Using these routines, you will be able to build and manipulate HDF
objects of any type, including those of your own design. All HDF
applications developed at NCSA use them as basic building blocks.

The general purpose routines are all written in C but are typically
accessible from FORTRAN.

New General purpose Routineswith Version 3.2

The general purpose routines described in this chapter were new with
HDF Version 3.2, released in June 1992; they replace the routines
provided with earlier versions. The new routines provide better

April 12, 1996 31

NCSA HDF Specification and Developer’s Guide

performance and increased functionality and users are strongly advised
to use them in new applications. The old routines are supported through
emulation, but may be eliminated from the HDF library in afuture
release.

The new lower layer incorporates the following improvements:

» More consistent data and function types

More meaningful and extensive error reporting

Simplification of key lower level functions

Simplified techniques to facilitate portability

Support for alternate forms of physical storage, such as linked

blocks storage and storage of the data portion of an object in an

externa file

e A version tag to indicate which version of the HDF library last
changed afile

» Support for simultaneous access to multiple files

» Support for simultaneous access to multiple objects within asingle
file

The previous lower layer was called the DF layer because all routines
began with the letters DF (e.g., DFopen and DFcl ose). Thenew
lower layer is called the H layer because all routines begin with the
letter H(e.g., Hopen, Hcl ose, and Hwr it e). The source modules
containing these routines begin with the letter h (see Table 2.1, “HDF
Version 3.2 source code modules’):

hfile.c Basic /0 routines
herr.c Error-handling routines
hkit.c General purpose routines

hbl ocks. c Routines to support linked block storage
hextelt.c Routines to support external storage of HDF data
elements

Overview of the Interface

This section provides specifications and descriptions of the public
functions of the general purpose interface.

Opening and Closing HDF These calls are used to open and close HDF files:

Files Hopen Provides an access path to an HDF file and reads all of the
DD blocks in the file into memory

Hcl ose Closesthe access path to afile

Locating Elementsfor Access These routines locate el ements or acquire other information about an

and Getting Information HDF file or its data objects. Except for Hendaccess, they initialize the
element that they locate and return an access ID that is used in later
references to the data element. Calls can include wildcards so that one
can search for unknown tags and reference numbers (tag/refs).

Hstartread Locates an existing data element with matching
tag/ref and returns an access ID for reading it

Hhext r ead Continues the search with the same access ID

Hendaccess Disposes of access D for tag/ref

Hnquire Returns access information about a data element

32 National Center for Supercomputing Applications

HDF General Purpose Interface

H shdf Determines whether afileisan HDF file.

Hhunber Returns the number of occurrences of a specified
tag/ref in afile

Hget | i bversion Returnsversion information for the current HDF
library

Hget fil eversion Returnsversioninformation for an HDF file

Reading and Writing Entire There are two sets of routines for reading and writing data elements.
Data Elements The routines described here are used to store and retrieve entire data
elements.

Hout el ement Adds or replaces elementsin afile
Hyet el ement Reads data elementsin afile

A second set of routines, described in the next section, may be used if
you wish to access only part of a data element.

Reading and Writing Part of a The second set of routines for reading and writing data elements makes

Data Element it possible to read or write al or part of a data element. One of the
accessroutines Hstartread or Hstartwite must becalled before
these Hwite, Head,or Hseek:

Hstartwite
Sets up writing to the object with the supplied tag/ref. If the
object exists, it will be modified; otherwise it will be
created.

Hwite Writesdatato adata element where the last write or Hseek()
stopped. If the space reserved is less than the length to
write, then only as much as can fit is written.

H ead Reads a portion of adata element. It starts at the last
position left by an Hread or Hseek call and reads any data
that remainsin the element up to a specified number of
bytes.

Hseek Sets the access pointer to an offset within a data el ement.
Thenexttime Head or Hwite iscaled, theaccess
occurs from the new position. The location to seek can be
specified as an offset from the current location, from the
start of the element, or from the end of the element..

Manipulating Data These routines perform operations on DDs without doing anything with
Descriptors (DDs) the data to which the DDs refer:

Hdupdd Generates new references to data that is already
referenced from somewhere else

Hdel dd Deletes atag/ref from thelist of DDs

Hhew ef Returns the next avail able reference number for the HDF
file

April 12, 1996 33

NCSA HDF Specification and Developer’s Guide

Creating Special Data
Elements

Development Routines

Error Reporting

HDF 3.2 introduces two alternate methods of storing HDF objects:
linked blocks and external elements. In previous releases, any data
element had to be stored contiguously and all of the objectsin an HDF
file had to be in the same physical file. The contiguous requirement
caused many problems, especially with regard to appending to existing
objects. If you wanted to append data to an object, the entire data
element had to be deleted and rewritten to the end of thefile.

Linked blocks allow elements in asingle HDF file to be non-
contiguous.

External elements allow a single HDF object to be stored in an external
file.

It isnot currently possible to store asingle object (such asavery large
data set) in multiple files. Nor can multiple objects be stored in one
external file.

Once they are created with the following routines, these special data
elements can be accessed with the routines used for normal data
elements:

Hcreate Createsanew linked block special data element
Hxcreate Createsanew externa file special dataelement

These routines have two modes of operation. Calling H.create witha
tag/ref that does not exist in afile will create a new element with the
given tag/ref which will be stored as linked blocks. On the other hand,
if the tag/ref already existsin thefile, the referenced object will be
promoted to linked block status. All data which had been stored in the
object before the promotion will be retained. HXcr eat e behaves
similarly.

The HDF library provides the following devel oper-level routines that
simplify the task of writing HDF applications. Most of these routines
mirror basic C library functions which are, unfortunately, not always
completely portablein their library form:

HDget t agnane Returns a pointer to atext string describing a given
tag

HDget space Allocates space

HDf r eespace Frees space

HDst r ncpy Copies a string from one location to another up to a
given number of characters

The HDF library incorporates the notion of an error stack. Thisallows
much of the context to be known when trying to decipher an error

message.

Error reporting is handled by the following routines:

HEpri nt Prints out al of the errors on the error stack to a specified
file

HEcl ear Clearsthe error stack

HERRCR Reports an error
Pushes the following information onto the error stack:

34

National Center for Supercomputing Applications

HDF General Purpose Interface

Other

Error type

source file name

Line number and the name of the function reporting
the error

Hereport Addsatext string to the description of the most recently
reported error (only one text string per error)

Standard C does not enable the code inside a function to know the
name of the function. Therefore, to use the macro HERROR to report
errors, there must exist a variable FUNC which pointsto a string
containing the name of the reporting function.

The Hsync routine has been defined and implemented to synchronize a
filewith itsimagein memory. Currently it is not very useful because
the HDF software includes no buffering mechanism and the two images
areawaysidentical. Hsync will become useful when bufferingis
implemented:

Hsync Synchronizes the stored version of an HDF file with the
image in memory

April 12, 1996

35

NCSA HDF Specification and Developer’s Guide

Function Specifications
Theterms IN: and OUT: are used as follows in this discussion:
IN: Value as input parameter
OUT: Value as output parameter
Opening and Closing Files
Hopen

i nt 32 Hopen(char *path, int access, intl6 ndds)

pat h IN: Name of file to be opened

access IN: DFACC_READ, DFACC ROWR, DFACC CREATE, DFACC ALL, or
DFACC WR TE

ndds IN: Number of DDsin ablock if this file needs to be created

Purpose Provides an access path to an HDF file and reads all of the DD blocksin thefile

into primary memory.
Return value Returnsfile ID if successful and FAIL (- 1) otherwise.
Description Opens an HDF file.

The following events occur on successful exit:

* File_rec membersarefilledin. (Fi | e_rec isaninternal HDF structure
containing information about the opened file.)

* Therequested fileis opened with the relevant permission.

» Information about DDsis set up in memory.

» Thefile headers and initial information are set up for new files.

Access privilege codes
HDF provides severa constants for use as access privilege codes as listed below.
Note that these constants are not bit-flags and should not be ORed together to
combine access modes. Doing so may cause odd behavior and, in some cases,
loss of data:

Recommended:
DFACC_READ Open for read only. If file does not exist, error.
DFACC_RDWR Open for read/write. If file does not exist, createit.
DFACC CREATE Force creation. If file exists, delete it, then open anew file
for read/write (in the spirit of the UNIX System command
cl obber).

Others:
DFACC ALL Same as DFACC_RDVR (obsolete but still supported).
DFACC WR TE Same as DFACC_RDWR (obsolete but still supported).

3-6 National Center for Supercomputing Applications

HDF General Purpose Interface

Hcl ose
intn Hcl ose(int32 jd)

id IN: Thefile ID of the file to be closed

Purpose Closes the access path to thefile.

Return value Returns SUCCEED (0) if successful and FAIL (- 1) otherwise.

Description i disfirst validated. If valid, the function closes the access path to the file.
If there are still access elements attached to thefile, the error DFE_OPENAI D is
pushed onto the error stack and the fileis not closed. Thisisafairly common

error when developing new interfaces. See the discussion of Hendaccess below
for debugging hints.

April 12, 1996 37

NCSA HDF Specification and Developer’s Guide

L ocating Elementsfor Accessand Getting Information

Hstartread

int32 Hstartread(int32 file id, uintl6 tag, uintl6 ref)

file id
t ag
ref

Purpose

Return value

Description

Hnext r ead

IN: ID of fileto attach access element to
IN: Tag to search for
IN: Reference number to search for

Locates an existing data element with matching tag/ref and returns an access ID
for reading it.

Returns access element ID if successful and FAIL (- 1) otherwise.

Searches the DDs for a particular tag/ref combination. If the search is successful,
an access element is created, attached to the file, and positioned at the start of
that data element; otherwise an error is returned. Searching on wildcards begins
from the beginning of the DD list. Wildcards can be used for the tag or reference
number (DFTAG W LDCARD and DFREF_W LDCARD) and they match any values.

intn Hnextread(int32 access id, uintl6 tag, uintl6 ref, int origin)

access _id
tag

ref
origin
Purpose

Return value

Description

IN: ID of aREAD access element

IN: Tag to search for

IN: Reference number to search for
IN: Position at which to start searching

Locates and positions aread access | D on next occurrence of tag/ref.
Returns SUCCEED (0) if successful and FAIL (- 1) otherwise.

Searches for the next DD that fits the tag/ref. Wildcards apply. If origin is
DF_START, searches from start of DD list; if ori gi n is DF_CURRENT, searches
from current position. Searching from the end of the file viaDF_END s not yet
implemented.

If the search is successful, then the access element is positioned at the start of
that tag/ref; otherwise, the access ID is not modified.

3-8

National Center for Supercomputing Applications

HDF General Purpose Interface

Hstartwite

int32 Hstartwite(int32 file id, uintl6é tag, uintl6 ref, int32 [ength)

file id
tag

ref

| engt h
Purpose
Return value

Description

Hendaccess
i nt 32 Hendaccess(i

access_id

Purpose
Return value

Description

IN: ID of fileto writeto

IN: Tag to write to

IN: Reference number to write to
IN: Length of the data element

Creates or replaces data element with matching tag/ref.
Returns access element ID if successful and FAIL (- 1) otherwise.

Sets up an access element to write a data element. The DD list of thefileis
searched first; if the tag/ref is found, the data element can be modified. If an
object with the corresponding tag/ref is not found, a new oneis created.

nt access_id)

IN: ID of access element to dispose of

Disposes of access element for tag/ref.
Returns SUCCEED (0) if successful and FAIL (- 1) otherwise.

Disposes of an access element. Only afinite number of access elements can be
active at agiventime, so it isimportant to call Hendaccess whenever you are
done using an element.

When devel oping new interfaces, a common mistake isto fail to call
Hendaccess for al of the elements accessed. When this happens, Hcl ose will
return FAIL and the dump of the error stack (see HEpri nt below) will tell how
many access elements are still active.

This can be a difficult problem to debug, asthe low levels of the HDF library
have no ideawho or what opened an access element and forgot to release it. A
tedious but effective means of debugging this problem isto annotate with
comments the locations where the attached count of afile record is changed.
Thisoccursinthefiles hfil e. c, hbl ocks. c,and hextel t.c.

April 12, 1996

39

NCSA HDF Specification and Developer’s Guide

H nquire

intn H nquire(int32 access id, int32 *pfile _id, uintl6 *ptag,
uintl1l6 *pref, int32 *plength, int32 *poffset, int32 *pposn,
i nt *paccess, intl6 *pspecial)

access_id
pfile id
ptag

pref

pl engt h
pof f set

pposn
paccess

pspeci al
Purpose

Return value

Description

Hi shdf
i nt 32 Hi shdf (char

pat h

Purpose
Return value

Description

IN: Access element 1D

OUT: FileID

OUT: Tag of the element pointed to

OUT: Reference number of the element pointed to
OUT: Length of the element pointed to

OUT: Offset of element in thefile

OUT: Position pointed to within the data element
OUT: Accesstype of this access element

OUT: Special code

Returns access information for a data element.

Returns SUCCEED (0) if the access element points to some data element and
FAIL (-1) otherwise.

Inquires for the statistics of the data element pointed to by the access element. If
apiece of information is not needed, a NULL can be sent in for that value.

Convenience macros for callsto H nqui re (HQuer yposi t on, HQeryl engt h,
etc.) aredefinedin hdf . h.

* pat h)

IN: Name of file

Determines whether afileisan HDF file.
Returns TRUE (non-zero) if fileisan HDF file and FALSE (0) otherwise.

The decision asto whether afileisan HDF file is based solely on the magic
number stored in thefirst four bytes of an HDFfile. Hi shdf may sometimes
identify afile asan HDF filethat Hopen isunableto open (e.g., an HDF file
with a corrupted DD list).

Note: H shdf only

determines whether a file is
an HDF file. It does not verify

that the file is readable.

3-10

National Center for Supercomputing Applications

HDF General Purpose Interface

Hnunber

i nt Hhunber(int32 file id, uintl6 tag)

file_ id IN: FileID
tag IN: Tag to be counted
Purpose Counts the number of occurrences of atagin afile.

Return value The number of occurrences of atag in afile.

Hget | i bver si on

Hget | i bversi on(uint32 *nmajorv, uint32 *ninorv, uint32 *rel ease,
char string[])

maj orv OUT: Major version number

m norv OUT: Minor version number

rel ease OUT: Release number

string OUT: Informational text string

Purpose Gets version information for current HDF library.

Return value Returns SUCCEED (0).

Description Returns the version of the HDF library. The version information is compiled
into the HDF library, so it is not necessary to have any open files for this
function to execute.

Hget fil eversion

Hogetfil eversion(uint32 file_id, uint32 *majorv, uint32 *mnorv,
uint 32 *rel ease, char *string)

file id IN: FileID

maj orv OUT: Magjor version number

m norv OUT: Minor version number

rel ease OUT: Release number

string OUT: Informational text string
Purpose Gets version information for an HDF file.

Return value Returns SUCCEED (0) if successful and FAIL (- 1) otherwise.

Description Returns the HDF version information stored in the given file.

April 12, 1996 311

NCSA HDF Specification and Developer’s Guide

Reading and Writing Entire Data Elements
Hput el ermrent

int Hputelenent(int32 file_id, uintl6 tag, uintl6 ref, uint8 *data,
i nt32 [ength)

file_id IN: FileID

tag IN: Tag of data element to put

ref IN: Reference number of data element to put
dat a IN: Pointer to buffer

I engt h IN: Length of data

Purpose Adds or replaces an element in afile.

Return value Returns SUCCEED (0) if successful and FAIL (- 1) otherwise.
Description Writes anew data element or replaces an existing data element in aHDF file.
Uses Hwri t e and itsassociated routines.
Hget el ermrent

int Hgetelement(int32 file id, uintl6 tag, uintl6 ref, uint8 *data)

file id IN: ID of thefileto read from

tag IN: Tag of data element to read

ref IN: Reference number of data element to read
dat a OUT: Buffertoreadinto

Purpose Obtains the data referred to by the passed tag/ref.

Return value Returns SUCCEED (0) if successful and FAIL (- 1) otherwise.

Description Reads a data element from an HDF file and puts it into the buffer pointed to by
dat a. The space alocated for the buffer is assumed to be large enough.

Note: Hget el ement assumes
that the buffer is large enough
to hold the data being read. It
is the user’s responsibility to
prevent data loss by ensuring
that this is the case.

312 National Center for Supercomputing Applications

HDF General Purpose Interface

Reading and Writing Part of a Data Element

Hr ead

int32 Hread(int32 access_id, int32 [ength, uint8 *data)

access_id
| engt h
dat a
Purpose

Return value

Description

Hwite

IN: Read access element ID
IN: Length of segment to read in
OUT: Pointer to dataarray to read to

Reads a portion of a data element.
Returns length of segment actually read if successful and FAIL (-1) otherwise.

Reads in the next segment in the data element pointed to by the access element.
Hread startsat thelast position left by an Hread or Hseek call and readsany
datathat remainsin the element upto / engt h bytes. If the data element istoo
short (lessthan / engt h byteslong), Hread readsto the end of the data
element.

int32 Hwite(int32 access id, int32 [ength, uint8 *data)

access _id
I engt h
dat a
Purpose

Return value

Description

IN: Write access element ID
IN: Length of segment to write
IN: Pointer to datato write

Writes next data segment to data element.
Returns length of segment successfully written and FAIL (- 1) otherwise.
Writes the data to the data element wherethelast Hwite or Hseek Stopped.

Harite Startsat thelast positionleftby an Hwite or Hseek call, writesupto
a specified number of bytes, and leaves the write pointer at the end of the data
written. If the space reserved is less than the length to write, then only as much
as can fit iswritten.

It isthe user’ s responsibility to ensure that no two access elements are writing to
the same data element. Note that a user can interlace writes to multiple data
elementsin the samefile.

April 12, 1996

313

NCSA HDF Specification and Developer’s Guide

Hseek

intn Hseek(int32 access id, int32 offset, int origin)

access_id IN: Access element 1D
of f set IN: Offset to seek to
origin IN: Position to seek from:

DF_START (0) of fset from beginning of data element
DF_CURRENT (1) offset from current position
DF_END (2) of fset from end of data element

Purpose Sets the access pointer to an offset within a data element. The next time H ead
or Hwrite iscalled, theread or write occurs from the new position.

Return value Returns SUCCEED (0) if successful and FAIL (- 1) otherwise.

Description Sets the position of an access element in a data element so that the next H ead
or Hwite will start from that position. ori gi n determines the position from

which of fset should be counted.

Thisroutine fails if the access element is not associated with a data el ement or if
the position sought is outside of the data element.

Seeking from the end of a data element is not currently supported.

314 National Center for Supercomputing Applications

HDF General Purpose Interface

Manipulating Data Descriptors

Hdupdd

int Hdupdd(int32 file_ id, uintl6 tag, uintl6 ref, uintl6 ol d_tag,
uint16 ol d ref)

file_id
tag
ref
ol d_tag
ol d ref

Purpose

Return value

Description

Hdel dd

IN: FileID

IN: Tag of new data descriptor

IN: Reference number of new data descriptor

IN: Tag of data descriptor to duplicate

IN: Reference number of data descriptor to duplicate

Generates new references to data that is aready referenced from somewhere
else

Returns SUCCEED (0) if successful and FAIL (- 1) otherwise.

Duplicates a data descriptor so that the new tag/ref points to the same data
element pointed to by the old tag/ref.

int Hdeldd(int32 file id, uintl6 tag, uintl6 ref)

file id
tag

ref
Purpose

Return value

Description

IN: FileID
IN: Tag of data descriptor to delete
IN: Reference number of data descriptor to delete

Deletes atag/ref from thelist of DDs.
Returns SUCCEED (0) if successful and FAIL (- 1) otherwise.
Deletes the data descriptor of tag/ref from the DD list of thefile. Thisroutineis

unsafe and may leave afilein acondition that is not usable by some routines.
Use with care.

April 12, 1996

315

NCSA HDF Specification and Developer’s Guide

Hnewr ef
uintl16 Hnewref (int32 file id)

file_ id IN: FileID

Purpose Returns the next available reference number.
Return value Returns the reference number if successful and 0 otherwise.

Description Returns a reference number that can be used with any tag to produce a unique
tag/ref. Successive callsto Hnewr ef will generate a strictly increasing sequence
until the highest possible reference number has been returned; then Hiewr ef
will return unused reference numbers starting from 1.

3-16 National Center for Supercomputing Applications

HDF General Purpose Interface

Creating Special Data Elements

HLcr eat e

i nt32 HLcreate(int

int32 bl ock_
file_id

tag

ref

bl ock_I engt h
number _bl ock

Purpose:

Return value

Description

32 file_id, uintl6 tag, uintl6 ref,
I ength, int32 nunber_bl ocks)

IN: FileID
IN: Tag of new data element (or object)
IN: Reference number of new data element (or object)
IN: Length of blocksto be used
s IN: Number of blocks to use per linked block record

Creates anew linked block specia data element.

Returns access ID for special data element if successful and FAIL (-1)
otherwise.

Appending to existing HDF elements was a problem prior to HDF Version 3.2
because HDF objects had to be stored contiguously. When appending, the HDF
library forced the user to delete the existing element and rewrite it at the end of
the file. HDF Version 3.2 introduced the concept of linked blocks, which allow
unlimited appending to existing elements without copying over existing data.

This routine can be used to create an object with the given tag/ref as alinked
block element or to promote an existing element to be stored in linked blocks.

Initially, atableis set up to accommodate number_bl ocks linked blocks for the
specified data object. Each block has bl ock_I engt h bytes. If an existing object
isbeing promoted, bl ock_I engt h does not have to be the same size asthe
original element.

HLcr eat e returnsan active access |D with write permission to the linked block
element.

April 12, 1996

317

NCSA HDF Specification and Developer’s Guide

HXcr eat e

int32 HXcreate(int32 file id, uintl6é tag, uintl6 ref,
char *extern fil e _nane)

file id IN:
tag IN:
ref IN:

extern_file_name IN:

filerecord ID

Tag of the special data element to create or promote
Reference number of the special data element to
create/promote

name of the externa file to use for the data element

Purpose Creates anew external file special data element.

Return value Returns access |D for special dataelement if successful and FAIL (- 1)

otherwise.

Description Creates anew element in an external file or promotes an existing element to be
stored in an external file. If an existing element isto be promoted, it is deleted
(using Hdeldd) from the original file and copied into the new external file.

Distributing a single object over multiple external filesis not currently
supported. In addition, one cannot place multiple objectsin the same external

file.

This routine returns an active access | D with write permission to the external

element.

3-18

National Center for Supercomputing Applications

HDF General Purpose Interface

Development Routines
HDget t agnane
char *HDgett agnanme(ui nt 16 tag)

tag IN: Tag to look up

Purpose Gets a meaningful description of atag.
Return value Returns a pointer to a string describing thistag or NULL if the tag is unknown.

Description To reduce the amount of duplicated code, this routine can be used to map atag
to a character string containing the name of the tag.

The string returned by this routine is guaranteed to be 30 characters or less.

HDget space

voi d *HDget space(ui nt 32 qty)

qty IN: Number of bytesto allocate

Purpose Allocates space.

Return value If successful, returns a pointer to space that was allocated; otherwise returns
NULL .

Description Uses an appropriate allocation routine on the local machine to get space.

HDf r eespace
voi d *HDf reespace(void *ptr)

ptr IN: Pointer to previously-allocated space that is to be freed

Purpose Frees space.
Return value Returns NULL.

Description Uses an appropriate routine on the local machine to free space. Thisroutineis
platform dependent.

April 12, 1996 319

NCSA HDF Specification and Developer’s Guide

HDst r ncpy

char *HDstrncpy(regi ster char *dest, register char *source,
i nt32 [ength)

dest

source
| engt h
Purpose

Return value

Description

OUT: Pointer to areato copy string to
IN: Pointer to areato copy string from
IN: Maximum number of bytes to copy

Copies a string with maximum length / engt h.

Returns address of dest .

Createsasdtring in dest thatisat most / engt h characterslong. The number of
characters must include the NULL terminator for historical reasons. Hence, if

you are working with the string Foo, you must call this copy function with the
value 4 (three characters plusthe NULL terminator) in / engt h.

3-20

National Center for Supercomputing Applications

HDF General Purpose Interface

Error Reporting

HEpr i nt

void HEprint(FILE *stream int32 /evel)

stream
| evel

Purpose
Return value

Description

HEc!| ear

voi d HEcl ear (voi d)

Purpose
Return value

Description

HERROR
voi d HERROR(i nt 16

nunber

Purpose
Return value

Description

IN: Stream to print error messages on

IN: Levd of the error stack to print

Prints information on the error stack.

Has no return value.

Prints information on reported errors. If | evel iszero, dl of the errors
currently on the error stack are printed. Output from this function is sent to the
filepointedto by stream

The following information printed:

e AnASCII description of the error

e Thereporting routine

* Thereporting routine’ s source file name

* Theline at which the error was reported

If the programmer has supplied extrainformation by means of HEr eport , this
information is printed as well.

Clears all information on reported errors off of the error stack.
Has no return value.

Clears all of the information off of the error stack.

nunber)

IN: Error number

Reports an error.
Has no return value.

Reports an error. Any function calling HERROR must have avariable FUNC
which pointsto a string containing the name of the function.

HERROR is implemented as a macro.

April 12, 1996

321

NCSA HDF Specification and Developer’s Guide

HEr epor t
voi d HEreport(char *format,)
format IN: pri nt f -style format and arguments
Purpose Provides extrainformation to the error reporting routines.

Return value Has no return value.

Description Provides further annotation to an error report. Only one such annotation is
remembered for each error report. The arguments to this routine follow the style
of printf.

Consider the following example from hfile. c:

char *FUNC = "Hcl ose";

if (file_rec->attach > 0) {
file_rec->refcount ++;
HERROR(DFE_CPENAI D) ;
HEreport ("There are still %l active aids attached", file_rec->attach);
return FAL;

3-22 National Center for Supercomputing Applications

HDF General Purpose Interface

Other

Hsync

int Hsync(int32 file_id)

file id

Purpose
Return value

Description

IN: ID of thefileto synchronize

Synchronizes on-disk HDF file with image in memory.
Returns SUCCEED.

Hsync isnotincluded in the current HDF library rel ease because the on-disk
representation of an HDF file is aways the same asits in-memory
representation. Hsync will be provided when future rel eases implement buffering
schemes.

April 12, 1996

323

Chapter

Sets and Groups

Chapter Overview

Data Sets

Types of Sets

This chapter discusses the roles of the following sets and groupsin

organizing data stored in an HDF file:

* Raster image sets (RIS)

Raster image groups (RIG)

e Scientific data sets (SDS)
Scientific data groups (SDG)
Numeric data groups (NDG)
SDG-like NDGs

* Vsats
Vgroups

» Raster-8 sets (obsolete)

This chapter introduces several tags used in support of sets and groups.
All of these tags are fully described in Chapter 6, “Tag Specifications,”
and arelisted in the table in Appendix A, “NCSA HDF Tags.”

HDF files frequently contain several closely related data objects. Taken
together, these objects form a data set which serves a particular user
requirement. For example, five or six data objects might be used to
describe araster image; eight or more data objects might be used to
describe the results of a scientific experiment.

The HDF mechanism for specifying and controlling data setsis the
group. The data element of a group consists of asingle record listing
the tag/refs for all the objects contained in the data set. For example,
the raster image groups described in the following sections each contain
three tag/refs that point to three data objects that, taken as a set, fully
describe an 8-bit raster image.

The current HDF implementation supports three kinds of sets:
Raster image set

A set containing araster image and descriptive information such
as the image dimensions and an optional color lookup table

Scientific data set
A set containing a multidimensional array and information
describing the datain the array

April 12, 1996

4-1

NCSA HDF Specification and Developer’s Guide

Calling Interfaces for
Sets

Groups

Vet
A genera grouping structure containing any kinds of HDF
objects that a user wishes to include

Each HDF set is defined with a minimum collection of data objects that
will make sense when the set is used. For example, every raster image
set must contain at least the following data objects:

Raster image group
Thelist of the members of the set

Image dimension record
The width, height, and pixel size of the raster image

Raster image data
The pixel values that make up the image

In addition to the required objects, a set may include optional data
objects. An 8-hit raster image set, for instance, often contains a palette,
or color lookup table, which defines the red, green, and blue values
associated with each pixel in the raster image.

NCSA provides calling interfaces for al the HDF sets that it supports.
These interfaces provide routines for reading and writing the data
associated with each set. The libraries currently supported by NCSA are
callable from either C or FORTRAN programs.

In addition to the libraries, a growing number of command-line utilities
are available to manipulate sets. For example, a utility called r 8t ohdf
converts one or more raw raster images to HDF 8-bit raster image set
format.

The calling interfaces are described in the document NCSA HDF
Calling Interfaces and Utilities for Versions 3.2 and earlier and in the
NCSA HDF User’s Guide and NCSA HDF Reference Manual for
Version 3.3.

As discussed above, HDF data objects are frequently associated as sets.
But without some explicit identifying mechanism, there is often no
way to tie them together. To address this problem, HDF provides a
grouping mechanism called agroup. A group is a data object that
explicitly identifies al of the data objectsin a set.

Since agroup isjust another type of data object, its structureis like
that of any other data object; it includes a DD and a data element. But
instead of containing the pixel values for araster image or the
dimensions of an array, agroup data element contains alist of tag/refs
for the data objects that make up the corresponding set.

A group tag can be defined for any set. For instance, the raster image
group tag (RIG, DFTAG_RI G isused to identify members of raster
image sets; the RIG data element lists the tag/refs for a particular raster
image set.

4-2

National Center for Supercomputing Applications

Sets and Groups

An Example

Suppose that the two images shown in Figure 1.5, “Physical
Representation of Data Objects,” are organized into two sets with group
tags. Since they are raster images, they may be stored as RIGs. Figure
4.1 illustrates the use of RIGs with these images.

Figure4.1 Physical Organization of Sample RIG Groupings

Offset Item Contents
0 | FH 0e031301 (HDF magic number)
4 DDH 10 oL
10 DD DFTAGFID 1 130 4
22 | DD DFTAGFD 1 134 41
34 DD DFTAG LUT 1 175 768
46 DD DFTAG I D 1 943 4
58 DD DFTAG R 1 947 240000
70 DD DFTAG | D 2 240947 4
82 DD DFTAG R 2 240951 240000
94 DD DFTAGRG 1 480951 12
106 DD DFTAGR G 2 480963 12
118 | DD DFTAG NULL (Empty)
130 | Daa Sw3
134 Data solar wind sinulation: third try. 8/8/88
175 | Daa e (Data for image pal ette)
943 | Data 400, 600 ... (Data for 1st image dimension record)
947 | Daa e (Datafor 1<t raster image)
240947 | Daa 400, 600 ... (Data for 2nd image dimension record)
240951 | Daa e (Data for 2nd raster image)
480951 Data DFTAG IP8/1, DFTAGID 1, DFTAGR/1
(Tag/refsfor 1st RIG)
480963 Data DFTAG I P8/ 1, DFTAG 1D 2, DFTAGR /2
(Tag/refs for 2nd RIG)

General Features of

Groups

The file depicted in Figure 4.1 contains the same raster image
information as the file in Figure 1.5, but the information is organized
into two sets. Note that there is only one palette (DFTAG_I P8/ 1) and
that it isincluded in both groups.

Figure 4.1 also illustrates a number of important general features of
groups.

e The contents of a group must be consistent with one another. Since
the palette (DFTAG | P8) is designed for use with 8-bit images, the
image must be an 8-bit image.

» An application program can easily process all of the imagesin the
file by accessing the groups in the file. The non-RIG information in
the example can be used or ignored, depending on the needs and
capabilities of the application program.

» Thereisusually more than one way to group sets. For example, an
extra copy of theimage palette (DFTAG _| P8) could have been stored

April 12, 1996

4-3

NCSA HDF Specification and Developer’s Guide

in the file so that each grouping would have its own image pal ette.
That is not necessary in this instance because the same paletteisto
be used with both images. On the other hand, there are two image

dimension records in this example, even though one would suffice.

» Group status does not alter the fundamental role of an HDF object;
itisstill accessible asan individual data object despite the fact that
it also belongsto alarger set.

» A group provides an index of the members of a set. There is nothing
to prevent the imposition of other groupings (indexes) that provide a
different view of the same collection of data objects. In fact, HDF is
designed to encourage the addition of alternate views.

The following sections formally describe raster image sets (RIS),
scientific data sets (SDS), Vsets, and several related groups. The last
section of this chapter discusses an obsolete structure known as the
raster-8 set.

4-4 National Center for Supercomputing Applications

Sets and Groups

Raster Image Sets (RIS)

Raster Image Groups
(RIG)

RIS Tags

Table4.1 RIS Tags

The raster image set (RIS) provides aframework for storing images and
any number of optional image descriptors. An RIS aways contains a
description of the image data layout and the image data. It may also
contain color look-up tables, aspect ratio information, color correction
information, associated matte or other overlay information, and any
other data related to the display of theimage.

Tying everything together is the raster image group (RIG, see Figure
4.1 and the related discussion for an example). An RIG contains alist
of tag/refs that point in turn to the data objects that make up and
describe the image.

The number of entriesin an RIG is variable and most of the descriptive
information is optional. Complex applications may include references
to image-modifying data, such as the color table and aspect ratio, along
with the reference to the image data itself. Simple applications may use
simple application-level calls and ignore specialized video production or
film color correction parameters.

NCSA currently supports two RIG calling interfaces: RIS8 and RIS?4.
These interfaces are described in the document NCSA HDF Calling
Interfaces and Utilities for Versions 3.2 and earlier and in the NCSA
HDF User’s Guide and NCSA HDF Reference Manual for Version 3.3.

RIS implementations must fully support all of the tags presented in
Table 4.1.

Tag Contents of Data Element

DFTAG R G Raster image group
DFTAG I D Image dimension record

DFTAG R Raster image data

With these tags, images can be stored and read from HDF files at any
bit depth, with several different component ordering schemes. As
illustrated in Figure 4.1, the RIG tag points to the collection of tag/refs
that fully describe the RIS. The data element attached to the tag
DFTAG | D specifies the dimensions of the image, the number type of
the elements that make up its pixels, the number of elements per pixel,
the interlace scheme used, and the compression scheme used, if any.
The data element attached to the tag DFTAG_RI contains the actual raster
image data

April 12, 1996

4-5

NCSA HDF Specification and Developer’s Guide

Figure41l RISTags
DD List (tag/ref): [RIG1 | D1 R/1
"Data:"
[200 x 300, etc.
ID1| R/1|IP/1
The tags listed in Table 4.2 identify optional RIS information such as
color properties and aspect ratio. Note that the RI interface supports
only DFTAG LUT at thistime; the other tagsin Table 4.2 are defined
but the interfaces have not been implemented.
Table4.2 Optional RISTags
Tag Contents of Data Element
DFTAG XYP | XY position of image
DFTAG LD L ook-up table dimension record
DFTAG LUT | Color look-up table for non true-color images
DFTAG_MD Matte channel dimension record
DFTAG MA Matte channel data
DFTAG GCN | Color correction factors
DFTAG_GFM | Color format designation
DFTAG AR Aspect ratio
DFTAG MO | Machine-type override
4-6 National Center for Supercomputing Applications

Sets and Groups

Figure 4.2 illustrates the structure of an RIS that contains an image
paette (DFTAG | P8).

Figure4.2 RISTagsfor SetsContaining a Palette

Raster Image
Compression

DD List (tag/ref): [RIG1 1D/ 1 R/1 |1P8/1

"Data:" /
200 x 300, etc.

IDD1| RI/1| 1P8/1

HDF currently supports two raster image compression tags.

DFTAG RLE Run-length encoding
DFTAG_| MDOWP Aeria averaging
DFTAG _JPEG JPEG compression

RIG support does not require support for all compression tags. Be sure
to provide a suitable error message to the user when an unknown
compression tag is encountered.

Since new forms of data compression can be added to HDF raster
images, incompatibilities can arise between old libraries and files
created by newer libraries. For example, HDF Version 3.3 includes
JPEG compression for images. A JPEG-compressed raster imagein a
file created by an HDF Version 3.3 library cannot be read by an HDF
Version 3.2 library.

April 12, 1996

4-7

NCSA HDF Specification and Developer’s Guide

Scientific Data Sets

Backward and forward
compatibility

The scientific data set (SDS) provides aframework for storing
multidimensional arrays of data with descriptive information that
enhances the data. Current specifications support the following types of
numbersin SDS arrays.

e 8-bit, 16-bit, and 32-bit signed and unsigned integers
e 32-bit and 64-bit floating point numbers

Datain an SDS can be stored either as two's complement big endian
integers, as | EEE Standard floating point numbers, or in native mode,
the format used by the machine from which they were written.

The user interface for storing and retrieving SDSsis fully described in
the document NCSA HDF Calling Interfaces and Utilities for Versions
3.2 and earlier and in the NCSA HDF User’s Guide and NCSA HDF
Reference Manual for Version 3.3.

One of NCSA'’s concerns in HDF development is always to maximize
backward and forward compatibility; as much as possible, any
application written to use HDF should be able to read data files written
with an older or a newer version of the libraries. To maximize this
compatibility, NCSA had to consider the following factors in upgrading
the SDS capabilities:

» Support for future variations (e.g., new number types, data
compression, and new physical arrangements for SDS storage)

e Older versions of the library should be able to read new datafiles if
the dataitself can be interpreted by the older version. To do so, the
older version must be able to determine whether the datain agiven
data object will be comprehensibleto it. For example, if a newly
created file contains 32-bit | EEE floating point or Cray floating
point data objects, older versions of the library should be able
determine that fact then read and interpret the data.

* New libraries must be able to read and interpret files created by older
versions.

Unfortunately, such compatibility concernsyield an SDS structure
somewhat more complex than would otherwise be the case. Two
examples illustrate the problem:

» HDF 3.2 development had to accommodate the fact that HDF
Version 3.1 and previous versions only supported 32-bit IEEE
floating-point numbers and Cray floating point numbersin SDSs.
SDSs in HDF versions since Version 3.2 support 8-bit, 16-bit, and
32-hit signed and unsigned integers, 32-bit and 64-bit floating-point
numbers, and the local machine format (native mode) for all
supported architectures.

» HDF 3.3 includes support for the netCDF data model, which
involved the creation of an entire new structure for supporting
netCDF objects, based on Vgroups and Vdatas. At the sametime, a
goal of HDF 3.3 was to harmonize the SDS and the netCDF data

4-8

National Center for Supercomputing Applications

Sets and Groups

Internal Structures

SDG Structures

Table4.3 Required SDG Tags

model, which was best accomplished by storing SDS objectsin the
same way that netCDF objects are stored. In order to maintain
backward compatibility, two structures had to be created for every
SDS or netCDF object: one that could be recognized by older HDF
libraries, and the new structure.

In the following sections we describe how the first problem was solved.
A later issue of this manual will describe how the second problem was
addressed.

The SDS capability was substantially enhanced for HDF Version 3.2.
Previous versions employed a structure known as a scientific data group
(SDG); Version 3.2 and subsequent versions use the numeric data group
(NDG). To accommodate the enhanced structure and to remain
compatible with previous releases, the current HDF library supports the
following scientific and numerical data groups:

SDGs Created by old libraries and containing 32-bit |IEEE and
Cray floating-point data.

NDGs Created by the newer libraries (Version 3.2 and later) and
containing any acceptabl e floating-point or non-floating-
point data. This data group will not be recognized by old
libraries.

SDG-like NDGs
Created by the new library and containing |EEE 32-bit
floating-point data only. The old libraries will recognize
and interpret these numerical data groups correctly.

The NDG structure supports 8-bit, 16-bit, and 32-bit signed and
unsigned integers, and 32-bit and 64-bit floating-point numbers. It also
supports native mode, data sets written to HDF filesin the local
machine format.

The following sections describe the SDG, NDG, and SDG-like NDG
structures.

SDGs must contain at least the data objects listed in Table 4.3.

Tag Contents of Data Element

DFTAG SDG Scientific data group.

DFTAG_SDD Dimension record for array-stored data. Includes the
rank (number of dimensions), the size of each
dimension, and the tag/refs representing the number
type of the array data and of each dimension.

All SDG number types are 32-bit | EEE floating-
point.

DFTAG SD Scientific data

In addition to the required data objects listed above, SDGs may contain
any of the objects listed in Table 4.4. Note that the optional data
objects are the same for SDGs, NDGs, and SDG-like NDGs; the only
differences are the number types that may be used.

April 12, 1996

4-9

NCSA HDF Specification and Developer’s Guide

Table44 Optional SDG, NDG,
and SDG-like NDG Tag Contents of Data Element
Tags

DFTAG_SDs Scales of the different dimensions. To be used when
interpreting or displaying the data (32-bit floating
point numbers only for SDGs and SDG-like NDGs).
DFTAG SDL Labelsfor al dimensions and for the data. Each of
the dimension labels can be interpreted as an
independent variable; the data label is the dependent
variable.

DFTAG SDU Unitsfor all dimensions and for the data.

DFTAG_SDF Format specifications to be used when displaying
values of the data.

DFTAG_SDM Maximum and minimum values of the data. (32-bit
floating point numbers only for SDGs and SDG-like
NDGs.)

DFTAG SDC Coordinate system to be used when interpreting or
displaying the data.

Asillustrated in Figure 4.3, the SDG tag points to the collection of
tag/refs that define the SDG.

Figure43 SDG
Structure DD list (tag/ref)

| sbG1 | so1 | sD1 SDM 1

Data

q a
|54 x 60, etc. | max: 11.6
mn: 0.2

SDOy1| SO 1 SDM 1 2.3 4.5 4.1 ...
2.5 48 4.3 ...
1.6 3.9 7.2 ...
NDG Structures NDGs must contain at least the data objects listed in Table 4.5
Table4.5 Required NDG Tags
Tag Contents of Data Element

DFTAG NDG | Numerical data group.

DFTAG SDD | Dimension record for array-stored data. Includes the
rank (number of dimensions), the size of each
dimension, and the tag/refs representing the number
types of the data and of each dimension.

4-10 National Center for Supercomputing Applications

Sets and Groups

Figure4.4 NDG Structure

In HDF 3.2, the number types of dimension scales
must be the same as that of the array-stored data.
Later implementations allow dimension scalesto be

typed separately.

DFTAG SD Scientific data.

DFTAG NT Number type of the data set. Default is the most
recent DFSDset NT() setting. If DFSDset NT() has
not been called, the default will be 32-bit IEEE
floating-point.

In addition to these required data objects, an NDG may contain any of
the data objects listed in Table 4.4, “Optional SDG, NDG, and SDG-
like NDG Tags.”

Asillustrated in Figure 4.4, the basic NDG and SDG structures are
identical. Thefirst clue to the difference is that the NDG tag replaces
the SDG tag. Thisisaflag to prevent older libraries from stumbling
over the more important difference; the NDG data element can
accommodate data that pre-Version 3.2 libraries cannot interpret. The
new tag ensures that older libraries will not recognize the data object
and thus will not try to interpret the new data types. For example,
NDG data can include number types or a data compression scheme that
apre-Version 3.2 library will not recognize.

DD list (tag/ref)

@1 | sl | sDl sV 1

Data

A
54 x 60, etc. | \ max: 11.6
mn: 0.2

SO 1 \50/1 SDM 1

2.3 45 4.1 ...
2.5 4.8 4.3 ...

1.6 3.9 7.2...

SDG-like NDG Structures

Aswe have said earlier,

» SDGs, the SDS grouping structure available prior to HDF Version
3.2, could include only 32-bit floating point and Cray floating point
numbers.

* NDGs, available since Version 3.2, can include 8-bit, 16-bit, and
32-hit signed and unsigned integers, and 32-bit and 64-bit floating
point numbers.

» SDG-like NDGs, also available since Version 3.2, distinguish
SDSs that can still be read by the older versions of the library.

This backward compatibility is achieved by examining every SDS that

iswritten to an HDF file. If the SDS is compatible with older libraries,

April 12, 1996

4-11

NCSA HDF Specification and Developer’s Guide

it is written to the file with both SDG and NDG structures. If it is not
compatible with older libraries, only the NDG structureis used.

Table 4.6 lists the objects that SDG-like NDGs must contain.

Table 4.6 Required SDG-like

NDG Tags Tag Contents of Data Element
DFTAG NDG Numerical data group.
DFTAG SDG Scientific data group.
DFTAG SDLNK The NDG and SDG linked to the scientific data set
in this group.
DFTAG_SDD Dimension record for array-stored data. Includesthe

rank (number of dimensions), the size of each
dimension, and the tag/refs representing the
number types of the data and of each dimension.

In an SDG-like NDG, the number types are all 32-
bit |EEE floating-point.

DFTAG SD Scientific data.

SDG-like NDGs can include the same optional data objects as described
for SDGsand NDGs in Table 4.4, “Optional SDG, NDG, and SDG-
like NDG Tags.”

Figure 4.5illustrates the SDG-like NDG structure.
Figure45 SDG-like NDG Structure

DD List (tag/ref)
‘SDGl ‘I\DGll BN \30/1 E

Data
4
SDGE 1 NDG 1
SOl SOl | SDM1 | 54 x 60, etc.
2.3 4.5 4.1
2.5 4.8 4.3 ... max: 11.6
SDY1 | SD'1 | SDM1 | SDLNK/ 1 mn: 0.2
1.6 3.9 7.2 ...
Compatibility with Future HDF releases will probably support additional optional SDS
Future NDG Structures features. These featureswill fall into the following categories:

Optional and compatible features
Optional features that are compatible with older HDF versions
even though they may not be supported in the older libraries.

4-12 National Center for Supercomputing Applications

Sets and Groups

For example, a new time stamp attribute might be added. The
time stamp would not be understood by older libraries, but it
would not render them unable to read the SDS data either

Optiona and incompatible features

Optional new features that may render the data unreadable by
older HDF libraries.

For example, a compression attribute could be added. Older
HDF libraries that contain no compression routines would not
be able to read the compressed data.

A tag numbering convention has been developed to address this
problem:

Required tags

Thesetags arelisted in Table 4.3, “Required SDG Tags,” Table
4.5, “Required NDG Tags,” and Table 4.6, “Required SDG-like
NDG Tags.” All SDSs must contain all of thetagsin at least
one of these sets. (See Chapter 6, “ Tag Specifications,” for the
assigned tag numbers.)

Optional-incompatible tags

Tags for new SDS features that might render the data set
unreadable by older libraries are each assigned anumber t that
fallsin a special range determined by the constants
DFTAG_EREQand DFTAG_BREQ. Thatis,t must have a
value such that DFTAG_EREQ < t < DFTAG_BREQ.
When old software encounters atag in this range that it is not
able to interpret, it should not process the group.

Optional-compatible tags

These tags can have any valid tag number not allocated to one
of the other two categories.

April 12, 1996

4-13

NCSA HDF Specification and Developer’s Guide

Vsets, Vdatas, and Vgroups

Vsets, Vdatas, and Vgroups enable users to create their own grouping
structures. Unlike RIGs, SDGs, and NDGs, HDF imposes no
required structure; they are implemented almost entirely at the user level
and are not specified in detail in HDF or in this document.” The only
specifications define DFTAG VG, DFTAG VH, and DFTAG VS andthe
formats of their respective data elements. A detailed discussion similar
to that for the other grouping structuresis, therefore, inappropriate here.
Detailed information regarding the DFTAG VG, DFTAG VH, and
DFTAG VS tags can be found in Chapter 6, “ Tag Specifications.”
Conceptual and usage information can be found in the document NCSA
HDF Vset Version 2.0 for HDF Versions 3.2 and earlier and in the
NCSA HDF User’s Guide and the NCSA HDF Reference Manual for
HDF Version 3.3.

Figure 4.6. lllustration of a Vset

vgroup

text

March 15, 1990. Simul ation
wi th k=10.0, beta=1.22e3.

Cal cul ate the magni tude ... palette

=

7

raster images 3D mesh

An HDF Vset can contain any logical grouping of HDF data objects
within an HDF file. Vsets resemble the UNIX file system in that they
impose a basically hierarchical structure but also allow cross-linked data
objects. Unlike SDSs and RISs, Vsets have no prespecified content or
structure; users can use them to create structural relationships among
HDF objects according to their needs. Figure 4.6 illustrates a V set.

A Vset isidentified by a Vgroup, an HDF object that contains
information about the members of the Vset. Thetag DFTAG VG
identifies the Vgroup which contains the tag/refs of its members, an

Specialists in various fields are developing application program interfaces (APIs) that are becoming accepted standard
interfaces within their fields. Since these APIs are implemented with high level HDF functionality and using the standard
HDF user interface, they are user-level applications from the HDF development team’s point of view. From the final
enduser’s point of view, however, these APIs create a new level of user interface. When necessary, technical specifications
for these APIs and the associated interfaces will be presented by the specialized developers.

4-14 National Center for Supercomputing Applications

Sets and Groups

Table4.7 TheVgroup Tag

optional user-specified name, an optional user-specified class, and fields
that enable the Vgroup to be extended to contain more information.

The only required Vgroup tag is the tag that defines the Vgroup itself.

Tag

Contents of Data Element

DFTAG VG

\Vgroup

Vgroups are fully described in the document NCSA HDF Vset, Version
2.0 for Versions 3.2 and earlier and in the NCSA HDF User’s Guide
and NCSA HDF Reference Manual for Version 3.3.

April 12, 1996

4-15

NCSA HDF Specification and Developer’s Guide

The Raster-8 Set (Obsolete)

Raster-8 Sets

Table4.9 Raster-8 Set Tags

Compatibility Between
Raster-8 and Raster Image
Sets

Current HDF versions use the raster image set (RIS) to manage raster
images. But before the RIS was implemented, a ssimpler, less flexible
set called the raster-8 set was used for storing 8-bit raster images. This
set is no longer supported in the HDF software, although it may turn
up in some older HDF files.”

Theraster-8 set is defined by a set of tags that provide the basic
information necessary to store 8-bit raster images and display them
accurately without requiring the user to supply dimensions or color
information. The raster-8 set tags are listed in Table 4.9.

Tag Contents of Data Element

DFTAG R 8 8-bit raster image data
DFTAG G 8 8-bit raster image data compressed with run-length

encoding
DFTAG 118 IMCOMP compressed image data
DFTAG | D8 Image dimension record
DFTAG | P8 Image palette data

Note: Raster-8 set support
will not be maintained in future
HDF releases.

Software that does not support DFTAG CI 8 or DFTAG |1 8 must
provide appropriate error indicators to higher layers that might expect to
find these tags.

To maintain backward compatibility with raster-8 sets, the RIS
interface stores tag/refs for both types of sets. For example, if an image
is stored as part of araster image set, there is one copy each of the
image dimension data, the image data, and the palette data. But there
were two sets of tag/refs pointing to each data element: one for the RIS
and one for the raster-8 set. The image data, for example, is associated
withthetags DFTAG R 8 and DFTAG Rl .

Note that future HDF releases will phase out support for the raster-8
set. Therefore, new software should not expect to find both raster-8 and
RIS structures supporting 8-bit raster images. Eventually, only RIS
structures will be supported.

In fact, during the first three years that RIS was used, the HDF software stored raster images in both RIS and raster-8 sets.

4-16

National Center for Supercomputing Applications

Chapter

Annotations

Chapter Overview

General Description

Table5.1 Annotation Tags

This chapter introduces annotations, HDF data objects used to annotate
HDF files and objects.

The tags introduced in this chapter are fully described in Chapter 6,
“Tag Specifications,” and are listed in the tablein Appendix A, “Tags
and Extended Tag Labels.”

It is often useful to attach atext annotation to an HDF file or its
contents and to store that annotation in the same HDF file. HDF
provides this capability through the annotation data object.

The data element of an annotation is a sequence of ASCII characters that
can be associated with any of three types of objects:

* Thefileitself

e Anindividua HDF dataobject in thefile

* A tagthat identifies a data element

The current annotation interface supports only the first two.

Annotations come in two forms:

Label A short, NULL-terminated string. Labels may
include no embedded NULLSs.

Description A longer and more complex body of text of a
pre-defined length. Descriptions may contain
embedded NULLs.

Annotations are never required; they are used strictly at the discretion of
the creator or user of an HDF file.

Table 5.1 shows the currently defined annotation types and their
assigned tags.

Label Types | Description Types

File annotations DFTAG FI D DFTAG FD
Object annotations DFTAG DI L DFTAG DI A
Tag annotations DFTAG TI D DFTAG TD

April 12, 1996

5-1

NCSA HDF Specification and Developer’s Guide

File Annotations

Object Annotations

Figure5.1

Figure 5.2

Three SDS Tag/refs

The annotation interface is fully described in the document NCSA HDF
Calling Interfaces and Utilities for Versions 3.2 and earlier and in the
NCSA HDF User’s Guide and NCSA HDF Reference Manual for
Version 3.3

Any HDF file can include label annotations (DFTAG_FI D) and/or
description annotations (DFTAG_FD). The file annotation interface
routines provided in the HDF software read and write file labels and file
descriptions.

HDF data object annotation is complicated by the fact that you must
uniquely identify the object being annotated. Since atag/ref uniquely
identifies a data object, the data object that a particular annotation refers
to can be identified by storing the object's tag and reference number
with the annotation.

Note that an HDF annotation is itself a data object, so it hasits own
DD. This DD has atag/ref that points to the data element containing
the annotation. The annotation data element contains the following
information:

» Thetag of the annotated object

e Thereference number of the annotated object

* Theannotation itself

For example, suppose you have an HDF file that contains three
scientific data sets (SDSs). Each SDS has its own DD consisting of the
SDStag DFTAG SDGand a unique reference number, asillustrated in
Figure 5.1.

Tag 0 Ref

DFTAG_NDG 2 —

DFTAG_NDG 4 —

DFTAG_NDG 9 —

o
o

Suppose you wish to attach the following annotation to the second
SDS: “Datafrom black hole experiment 8/18/87.” This text will be
stored in a description annotation data object. The data element will
include the tag/ref, DFTAG_NDG/4, and the annotation itself. Figure 5.2
illustrates the annotation data object.

Sample Annotation Data Object

5-2

National Center for Supercomputing Applications

Annotations

Annotation DD

DFTAG DI A 2

Getting Reference
Numbers for Object
Annotations

DFTAG NDG 4

Data from bl ack hol e experinent 8/ 18/87

Tag Ref

To use annotation routines, you need to know the tags and reference

Description

numbers of the objects you wish to annotate.

The following routines return the most recent reference number used in
either reading or writing the specified type of data object:

DFSD ast r ef
DFR8I ast r ef
DFPI ast r ef

DFAN ast r ef

SDS data objects
RIS data abjects
Palettes
Annotations

Reference numbers for other objects can be obtained with the routine
Hf i ndnext r ef , agenera purpose HDF routine that searches an HDF
file sequentially for reference numbers associated with a given tag.

These routines are described in the document NCSA HDF Calling
Interfaces and Utilities for Versions 3.2 and earlier and in the NCSA
HDF User’s Guide and NCSA HDF Reference Manual for Version 3.3.

April 12, 1996

5-3

Chapter

Tag Specifications

Chapter Overview

The HDF Tag Space

This chapter addresses issues related to HDF tags and the data they
represent. The first section provides general information about tags and
their interpretation. The remainder of the chapter contains a complete
list of tags supported by NCSA HDF Version 3.3 and detailed tag
specifications.

Asdiscussed in Chapter 1, "The Basic Structure of HDF Files," 16 bits
are dlotted for an HDF tag number. This provides for 65535 possible
tags, ranging from 1 to 65535; zero (0) is not used. Thistag spaceis
divided into three ranges:

1 — 32767 Reserved for NCSA-supported tags
32768 — 64999 Set aside as user-definable tags
65000 — 65535 Reserved for expansion of the format

No restrictions are placed on the user-definable tags. Note that tags from
this range are not expected to be unique across user-devel oped HDF
applications.

Therest of this chapter is devoted to the NCSA-supported tags in the
range 1 to 32767.

Extended Tags and Alternate Physical Storage Methods

Extended Tag
Implementation

Prior to HDF Version 3.2, each data element had to be stored in one
contiguous block in the basic HDF file. Version 3.2 introduced
extended tags, a mechanism supporting alternate physical data element
storage structures. All NCSA-supported tags with variable-sized data
elements can take advantage of the extended tag features.

Extended tags are automatically recognized by current versions of the
HDF library and interpreted according to adescription record. The
description record, a complete data element, identifies the type of
extended element and provides the relevant parameters for dataretrieval.

Extended tags currently support two styles of aternate physical storage:

Linked block elements are stored in several non-contiguous blocks
within the basic HDF file.

April 12, 1996

6-1

NCSA HDF Specification and Developer’s Guide

External elements are stored in a separate file, external to the basic
HDF file.

Every NCSA-supported tag is represented in HDF libraries and files by
atag number. NCSA-supported tags that take advantage of alternative
physical storage features have an aternative tag number, called an
extended tag number, that appears instead of the origina tag number
when an alternative physical storage method isin use.

When NCSA determines that an extended tag should be defined for a
given tag, the extended tag number is determined by performing an
arithmetic OR with the original tag number and the hexadecimal
number 0x4000. For example, thetag DFTAG Rl pointsto a data
element containing araster image. If the data element is stored
contiguously in the same HDF file, the DD contains the tag number
302; if the data element is stored either in linked blocks or in an
externd file, the DD contains the extended tag number 16384.

If adata object uses aregular tag number, its storage structure will be
exactly as described in the “ Tag Specifications” section of this chapter.
Figure 6.1 illustrates this general structure with the DD pointing
directly to asingle, contiguous data block.

Figure6.1 Regular Data Object
regul ar_t ag ref_no
y=4
dat a_el enent
regul ar_tag Tagnumber
ref_no Reference number
data_el enent Thedataeement
If a data object uses an extended tag, the storage structure will appear
generally asillustrated in Figure 6.2. The DD will point to an extended
tag description record which in turn will point to the data.
Figure6.2 Data Object with
Extended Tag ext ended_t ag ref_no
£
ext_tag desc data_l olcat ion_infornation
|
£
data (inlinked blocks or external file)
extended tag Extended tag number
ref_no Reference number
ext_tag desc A 32-bit constant defined in Hdfi . h that identifies
the type of aternative storage involved. Current
definitionsinclude EXT_LI NKED for linked block
dementsor EXT_EXTERN for external eements.
6-2 National Center for Supercomputing Applications

Tag Specifications

Linked Block Elements

Figure6.3 Linked Block
Description Record

data | ocation_infornation
Information identifying and describing the linked
blocks or external file

dat a The data, stored either in linked blocks or in an
external file

Since the HDF tools were modified for HDF Version 3.2 to handle
extended tags automatically, the only thing the user ever hasto dois
specify the use of either the linked blocks mechanism or an external
file. Once that has been specified, the user can forget about extended
tags entirely; the HDF library will manage everything correctly.

There is only one circumstance under which an HDF user will need to
be concerned with the difference between regular tag numbers and
extended tag numbers. If auser bypasses the regular HDF interface to
examine araw HDF file, that user will have to know the extended tag
numbers, their significance, and the alternative storage structures.

As mentioned above, data elements had to be stored as single
contiguous blocks within the basic HDF file prior to HDF Version 3.2.
This meant that if a data element grew larger than the allotted space, the
file had to be erased from its current location and rewritten at the end of
thefile.

Linked blocks provide a convenient means of addressing this problem
by linking new data blocks to a pre-existing data element. Linked block
elements consist of a series of data blocks chained together in alinked
list (smilar to the DD list). The data blocks must be of uniform size,
except for the first block, which is considered a special case.

Thelinked block data element is a description record beginning with the
constant EXT_LI NKED, which identifies the linked block storage method.
The rest of the record describes the organization of the data element
stored as linked blocks. Figure 6.3 illustrates a linked block description
record.

ext ended_t ag ref_no
y<
EXT_LI NKED I engt h first_len
bl k_I en num bl k l'i nk_ref

extended tag The extended tag counterpart of any NCSA standard
tag (16-bit integer)

ref_no Reference number (16-bit integer)

EXT_LI NKED Constant identifying this as alinked block
description record (32-bit integer)

I ength Length of entire element (32-bit integer)
first_len Length of the first data block (32-bit integer)

bl k_Ien Length of successive data blocks (32-bit integer)
num bl k Number of blocks per block table (32-bit integer)

April 12, 1996

6-3

NCSA HDF Specification and Developer’s Guide

Figure6.4 A Linked Block Table

Figure 6.5

External

A Data Block

Elements

i nk_ref Reference number of first block table (16-bit integer)

The 1ink_ref field of the description record givesthe reference
number of the first linked block table for the element. Thistableis
identified by the tag/ref DFTAG LI NKED// i nk_ref and contains
num bl k entries. There may be any number of linked block tables
chained together to describe alinked block element. Figure 6.4
illustrates alinked block table.

DFTAG LI NKED l'ink_ref
y<
next_ref blk ref_1 bl k ref_2

l'ink ref Reference number for this table (16-bit integer)
next_ref Reference number for next table (16-bit integer)
bl k_ref_n Reference number for data block (16-bit integer)

The next _r ef field contains the reference number of the next linked
block table. A value of zero (0) in thisfield indicates that there are no
additional linked block tables associated with this element.

The bl k_ref_n fieds of each linked block table contain reference
numbers for the individual data blocks that make up the data portion of
the linked block element. These data blocks are identified by the tag/ref
DFTAG LI NKED/b! k_r ef _n asillustrated in Figure 6.5. Although it
may seem ambiguous to use the sametag to refer to two different
objects, this ambiguity is resolved by the context in which the tags

appear.

DFTAG LI NKED bl k_ref_n

N

dat a_bl ock

bl k_ref_n Reference number for this data block (16-bit integer)

dat a_bl ock Block of actual data (size specifiedby first_Ien or
bl k_I en inthe description record)

Linked block elements can be created using the function HLcr eat e() ,
which isdiscussed in Chapter 3, “The HDF General Purpose Interface.”

External elements allow the data portion of an HDF element to reside in
aseparate file. The potential of external dataelementsislargely
unexplored in the HDF context, although other file formats (most
notably the Common Data Format, CDF, from NASA) have used
external data elementsto great advantage.

Because there has been little discussion of external elements within the
HDF user community, the structure of these elementsiis still not

6-4

National Center for Supercomputing Applications

Tag Specifications

Figure6.6 External Element
Description Record

completely defined. Figure 6.6 shows a diagram of the suggested
structure for an external element.

ext ended_t ag ref_no
y=4
EXT_EXTERN of fset I ength fil ename

ext ended_t ag

ref_no
EXT_EXTERN

of fset

I engt h

fil enane

The extended tag counterpart of any NCSA standard
tag (16-bit integer)

Reference number (16-bit integer)

Constant identifying this as an external element
description record (16-bit integer)

L ocation of the data within the external file (32-bit
integer)

Length in bytes of the data in the external file (32-
bit integer)

Non-null terminated ASCII string naming the
external file (any length)

An external element description record begins with the constant
EXT_EXTERN, which identifies the data object as having an externally
stored data element. The rest of the description record consists of the
specific information required to retrieve the data.

External elements can be created using the function HXcr eat e() , which
is discussed in Chapter 3, “The HDF General Purpose Interface.”

April 12, 1996

6-5

NCSA HDF Specification and Developer’s Guide

Tag Specifications

The following pages contain the specifications of al the NCSA-
supported tags in HDF Version 3.3. Each entry contains the following
information:

e Thetag (in capital lettersin the left margin)
* The full name of the tag (on the first line to the right)

» Thetype and, where possible, the amount of datain the
corresponding data element (on the second line to the right)

When the data element is a variable-sized data structure—such as
text, astring, or avariable-sized array—the amount of data cannot
be specified exactly. Where possible, aformulais provided to
estimate the amount of data. The string ? byt es appears when
neither the size nor the structure of the data element can be specified.

e Thetag number in decimal/(hexadecimal) (on the third line to the
right)

» A diagramillustrating the structure of the tag and its associated data

Since all DDs that point to a data element contain data length and
data offset fields, these fields are not included in the illustrations.

» A full specification of the tag, including a description of the data
element and adiscussion of itsintended use.

Tags are roughly grouped according to the roles they play:
» Utility tags

Annotation tags

Compression tags

Raster Image tags

Composite image tags

Vector image tags

Scientific data set tags

Vset tags
» Obsolete tags

These groupings imply a general context for the use of each tag; they

are not meant to restrict their use.

Please note the subsection “ Obsolete Tags.” These tags have fallen out
of use with the continuing development of HDF. They are still
recognized by the HDF library, but users should not write new objects
using them; they may eventually be dropped from the HDF
specification.

In the following discussion, the ground symbol indicates that the DD
for this tag includes no pointer to a data element. |.e., thereisnever a
data element associated with the tag.

| | | —Oj This symbol indicates that
— < there is no data element

associated with the tag.

6-6

National Center for Supercomputing Applications

Tag Specifications

Utility Tags

DFTAG_NULL

DFTAG_VERSI ON

No data
0 bytes
1 (0x0001)
DFTAG_NULL ref_no —1
ref_no Reference number (16-bit integer; always 0)

Thistag is used for place holding and to fill empty portions of the data
description block. The length and offset fields (not shown) of a
DFTAG NULL DD must be zero (0).

Library version number
12 bytes plus the length of a string
30 (Ox001E)

DFTAG VERSI ON ref_no
y
naj orv ni norv rel ease string
ref_no Reference number (16-bit integer)
naj orv Major version number (32-bit integer)
mi norv Minor version number (32-bit integer)

rel ease Release number (32-bit integer)
string Non-null terminated ASCII string (any length)
The data portion of this tag contains the complete version number and a

descriptive string for the latest version of the HDF library to write to
thefile.

April 12, 1996

6-7

NCSA HDF Specification and Developer’s Guide

DFTAG_NT

Table6.1

Number Type Values

Number type
4 bytes
106 (Ox006A)
DFTAG NT ref_no
£
versi on type wi dth cl ass

ref_no Reference number (16-bit integer)
versi on Version number of NT information (8-bit integer)

type Unsigned integer, signed integer, unsigned character,
character, floating point, double precision floating point (8-
bit code)

width Number of hits, all of which are assumed to be significant
(8-bit code)

cl ass A generic vaue, with different interpretations depending on
type: floating point, integer, or character (8-bit code)

Several valuesthat may be used for each of the three typesin the field
CLASS are listed in Table 6.1. Thisis not an exhaustive list.

Type Mnemonic Value

Floating point DFNTF_NONE
DFNTF_| EEE
DFNTF_VAX
DFENTF_CRAY
DFNTF_PC
DFNTF_OONVEX

Integer DFNTI _MBO
DFNTI _I BO
DFNTI _VBO

Character DFNTC A |
DFNTC_EBCDOC
DFNTC BYTE

O N P AN PP O MM WDN P O

The number type flag is used by any other element in thefile to
indicate specifically what a numeric value looks like. Other tag types
should contain a reference number pointer to an DFTAG_NT instead of
containing their own number type definitions.

The version field allows expansion of the number type information, in
case some future number types cannot be described using the fields
currently defined. Successive versions of the DFTAG _NT may be
substantially different from the current definition, but backward
compatibility will be maintained. The current DFTAG_NT version
number is 1.

6-8

National Center for Supercomputing Applications

Tag Specifications

DFTAG _Mr Machine type
0 bytes
107 (0x006B)

DFTAG MI doubl e fl oat int char *1

doubl e Specifies method of encoding double precision floating point

(4-bit code)

float Specifies method of encoding single precision floating point
(4-bit code)

int Specifies method of encoding integers (4-bit code)

char Specifies method of encoding characters (4-bit code)

DFTAG_MT specifiesthat all unconstrained or partialy constrained values
in thisHDF file are of the default type for that hardware. When
DFTAG_M is set to VAX, for example, al integers will be assumed to be
in VAX byte order unless specifically defined otherwise with a

DFTAG _NT tag. Note that all of the headers and many tags, the whole
raster image set for example, are defined with bit-wise precision and

will not be overridden by the DFTAG_MT setting.

For DFTAG_M, the reference field itself isthe encoding of the DFTAG M
information. The reference field is 16 bits, taken as four groups of four
bits, specifying the types for double-precision floating point, floating
point, integer, and character respectively. This allows 16 generic
specifications for each type.

To the user, these will be defined constants in the header file hdf.h,
specifying the proper descriptive numbers for Sun, VAX, Cray,
Convex, and other computer systems. If thereisno DFTAG M in afile,
the application may assume that the datain the file has been written on
the local machine; any portability problems must be addressed by the
user. For this reason, we recommend that all HDF files contain a
DFTAG_MT for maximum portability.

April 12, 1996 6-9

NCSA HDF Specification and Developer’s Guide

Currently available data encodings are listed in Table 6.2.

Table6.2 Available Machine Types
Type Available Encodings
Double precision floating | | EEE64
point VAX64
CRAY128
Floating point | EEE32
VAX32
CRAY64
Integers VAX32
Intel 16
Intel 32
Mot or ol a32
CRAY64
Characters ASO |
EBCD C
New encodings can be added for each data type as the need arises.
6-10

National Center for Supercomputing Applications

Tag Specifications

Annotation Tags

DFTAG_FI D

DFTAG_FD

DFTAG TI D

Fileidentifier
String
100 (0x0064)
DFTAG FI D ref_no
character_string
ref_no Reference number (16-bit integer)

character_string Non-null terminated ASCII text (any length)

This tag points to a string which the user wants to associate with this
file. The string is not null terminated. The string is intended to be a
user-supplied title for thefile.

File description
Text
101 (0x0065)

DFTAG FD ref_no

N

t ext_bl ock

ref_no Reference number (16-bit integer)
text_block Non-null terminated ASCII text (any length)

This tag points to a block of text describing the overall file contents.
The text can be any length. The block is not null terminated. The text
isintended to be user-supplied comments about thefile.

Tag identifier
String
102 (0x0066)

DFTAG TID tag

N

character_string

tag Tag number to which this tag refers (16-bit integer)

character_string
Non-null terminated ASCII text (any length)

The data for thistag is a string that identifies the functionality of the
tag indicated in the space normally used for the reference number. For

April 12, 1996

6-11

NCSA HDF Specification and Developer’s Guide

DFTAG TD

example, the tag identifier for DFTAG_TI D might point to data that reads
"tag identifier."

Many tags are identified in the HDF specification, so it is usualy
unnecessary to include their identifiersin the HDF file. But with user-
defined tags or specia -purpose tags, the only way for a human reader to
diagnose what kind of datais stored in afileisto read tag identifiers.
Use tag descriptions to define even more detail about your user-defined

tags.

Note that with this tag you may make use of the user-defined tagsto
check for consistency. Although two persons may use the same user-
defined tag, they probably will not use the same tag identifier.

Tag description
Text
103 (0x0067)

DFTAG TD tag

N

text_bl ock

tag Tag number to which this tag refers (16-bit integer)
text_bl ock Non-null terminated ASCII text (any length)

The data for thistag is a text block which describes in relative detail the
functionality and format of the tag which isindicated in the space
normally occupied by the reference number. Thistag isintended to be
used with user-defined tags and provides a medium for users to exchange
files that include human-readabl e descriptions of the data.

It isimportant to provide everything that a programmer might need to
know to read the data from your user-defined tag. At the minimum, you
should specify everything you would need to know in order to retrieve
your data at alater date if the original program were lost.

6-12

National Center for Supercomputing Applications

Tag Specifications

DFTAG_DI L

DFTAG DI A

Dataidentifier label
String
104 (0x0068)

DFTAGD L ref_no
£
obj _tag obj _ref_no character_string
ref_no Reference number (16-bit integer)
obj tag Tag number of the data to which this label applies (16-
bit integer)

obj_ref_no Reference number of the data object to which this label
applies (16-bit integer)

character_string
Non-null terminated ASCI| text (any length)

The DFTAG DI L dataobject consists of atag/ref followed by astring.
The string serves as alabel for the dataidentified by the tag/ref.

By including DFTAG DI L tags, you can give adata object alabel for
future reference. For example, DFTAG DI L can be used to assign titles to
images.

Data identifier annotation
Text
105 (0x0069)

DFTAG D A ref_no

£

obj tag obj _ref_no text_bl ock

ref_no Reference number (16-bit integer)

obj _tag Tag number of the data to which this annotation applies
(16-bit integer)

obj_ref_no Reference number of the data object to which this
annotation applies (16-hit integer)

text_block Non-null terminated ASCII text (any length)

The DFTAG DI A data object consists of atag/ref followed by atext
block. The text block serves as an annotation of the data identified by
the tag/ref.

With aDFTAG DI A tag, any data object can have alengthy, user-written
description. This can be used to include comments about images, data
sets, source code, and so forth.

April 12, 1996

6-13

NCSA HDF Specification and Developer’s Guide

Compression Tags

DFTAG _RLE

DFTAG_| MC

Run length encoded data
0 bytes
11 (0Ox000B)

DFTAG RLE ref_no —1

ref_no Reference number (16-bit integer)

Thistag isused in the DFTAG_| D compression field and in other places
to indicate that an image or section of datais encoded with arun-length
encoding scheme. The RLE method used is byte-wise. Eachrun is
preceded by a count byte. The low seven bits of the count byte indicate
the number of bytes (n). The high bit of the count byte indicates
whether the next byte should be replicated n times (high bit = 1), or
whether the next n bytes should be included asis (high bit = 0).

See also: DFTAG | Din“Raster Image Tags’
DFTAG_NDGin “ Scientific Data Set Tags’

IMCOMP compressed data
0 bytes
12 (0x000C)

DFTAG | MC ref_no *1

ref_no Reference number (16-bit integer)

Thistag isused in the DFTAG | D compression field and in other places
to indicate that an image or section of datais encoded with an

IMCOMP encoding scheme. This schemeisa4:1 aerial averaging
method which is easy to decompress. It counts color frequenciesin 4x4
sguares to optimize color sampling.

See also: DFTAG | Din“Raster Image Tags’
DFTAG_NDGin “ Scientific Data Set Tags'

6-14

National Center for Supercomputing Applications

Tag Specifications

DFTAG_JPEG

DFTAG_GREYJPEG

24-bit JIPEG compression information
? bytes
13 (0x000D)

DFTAG_JPEG ref_no *ﬂ‘

JFIF header

ref_no Reference number (16-bit integer)

This tag points to header information for 24-bit JPEG compressed
images. Thedatain thistag isidentical to the header datastored in a
JFIF (JPEG File Interchange Format) file up to the start-of-frame
parameter. The start-of-frame parameter and al further data for the JPEG
image is stored in the associated DFTAG _Cl dataelement which isthe
companion to the DFTAG_JPEGelement. (See the document JPEG File
Interchange Format™ for a detailed description of the file format.)

8-hit JIPEG compression information
? bytes
14 (Ox000E)

DFTAG GREYJPEG | ref_no T4

JFIF header

ref_no Reference number (16-bit integer)

This tag points to header information for 8-bit JPEG compressed
images. The datain thistag isidentical to the header data stored in a
JFIF (JPEG File Interchange Format) file up to the start-of-frame
parameter (see the JFIF format document for further details). The start-
of-frame parameter and al further data for the JPEG image is stored in
the associated DFTAG_Cl data element which isthe companion to the
DFTAG_JPEGeement.

The document JPEG File Interchange Format has not been published in a regular periodical. An electronic copy is available
as a Postscript file from NCSA’s FTP server ft p. ncsa. ui uc. edu in the same directory as this document, NCSA
HDF Specification and Developer’s Guide. Printed copies are available from C-Cube Microsystems, 1778 McCarthy
Boulevard, Milpitas, CA 95035 (phone: 408-944-6300. Fax: 408-944-6314. Current email contact:

eric@3. pl a.ca. us).

April 12, 1996

6-15

NCSA HDF Specification and Developer’s Guide

DFTAG Cl Compressed raster image
? bytes
303 (0x012F

DFTAG A ref_no

ref_no Reference number (16-bit integer)

This tag points to a stream of bytes that make up a compressed image.
The type of compression, together with any necessary parameters, are
stored as a separate data object. For example, if DFTAG_JPEGis
contained in the same raster image group, the stream of bytes contains
the sratt-of-frame parameter and all further data for the JPEG image.
Other parameters are stored in the DFTAG_JPEG object.

6-16 National Center for Supercomputing Applications

Tag Specifications

Raster Image Tags

DFTAG Rl G

Table6.3 Available RIG Tags

DFTAG | D
DFTAG LD
DFTAG_MD

Raster image group
n*4 bytes (where n is the number of data objectsin the group)
306 (0x0132)

DFTAG R G ref_no
y4
tag 1 ref_1 tag 2 ref_2

ref_no Reference number (16-bit integer)
tag n Tag number for nt" member of the group (16-bit integer)

ref_n Reference number for n™ member of the group (16-bit
integer)

The RIG data element contains the tag/refs of all the data objects
required to display araster image correctly. Application programs that
deal with RIGs should read all the elements of a RIG and process those
identifiers which it can display correctly. Even if the application cannot
process all of the objects, the objects that it can process will be usable.

Table 6.3 lists the tags that may appear in an RIG.

Tag Description

DFTAG I D Image dimension record
DFTAG R Raster image

DFTAG XYP X-Y position

DFTAG LD LUT dimension

DFTAG LUT Color lookup table
DFTAG MD Matte channel dimension
DFTAG MA Matte channel

DFTAG OON Color correction
DFTAG CFM Color format

DFTAG AR Aspect ratio

Example

DFTAG | D, DFTAG Rl , DFTAG LD, DFTAG LUT

Assume that an image dimension record, araster image, an LUT
dimension record, and an LUT are all required to display a particular
raster image correctly. These data objects can be associated in an RIG so
that an application can read the image dimensions then the image. It
will then read the lookup table and display the image.

DFTAG | D DFTAG LD DFTAG MD
Image dimension LUT dimension Matte dimension
20 bytes 20 bytes 20 bytes

300 (0x012C) 307 (0x0133) 308 (0x0134)

April 12, 1996

6-17

NCSA HDF Specification and Developer’s Guide

DFTAG I D ref_no
£
x_dim y dim DFTAG NT NT_ref
el enent s interlace conp_tag conp_ref
ref_no Reference number (16-bit integer)
x_dim Length of x (horizontal) dimension (32-bit integer)
y dim Length of y (vertical) dimension (32-bit integer)
NT_r ef Reference number for number type information
el enent s Number of elements that make up one entry (16-bit
integer)

interlace Type of interlacing used (16-bit integer)
0 The components of each pixel are together.
1 Color elements are grouped by scan lines.
2 Color elements are grouped by planes.

conp_tag Tag which tells the type of compression used and any
associated parameters (16-bit integer)

conp_ref Reference number of compression tag (16-bit integer)

These three dimension records have exactly the same format; they
specify the dimensions of the 2-dimensional arrays after which they are
named and provide information regarding other attributes of the datain
the array:

DFTAG | D specifiesthe dimensions of aDFTAG R .

DFTAG_LD specifies the dimensions of a DFTAG_LUT.

DFTAG_MD specifies the dimensions of aDFTAG_MA.
Other attributes described in the image dimension record include the
number type of the elements, the number of elements per pixel, the
interlace scheme used, and the compression scheme used (if any).

For example, a 512x256 row-wise 24-bit raster image with each pixel
stored as RGB bytes would have the following values:

x_dim 512
y dim 256
NT ref UINT8

el enent s 3 (3 elements per pixel: e.g., R, G, and B)
interlace 0(RGB vauesnot separated)
conp_tag 0 (no compression is used)

The diagram aboveillustratesthetag DFTAG | D. The DFTAG LD and
DFTAG_MD diagramswould be identical except for the tag namein the
fist cell, whch would be DFTAG LD and DFTAG_MD, respectively.

6-18 National Center for Supercomputing Applications

Tag Specifications

DFTAG_RI

DFTAG_LUT

Raster image

xdim* ydim* elements* NTsize bytes (xdim, ydim, elements, and NTsize
are specified in the corresponding DFTAG | D)

302 (0x012E)

DFTAG R ref_no

N

ref_no Reference number (16-bit integer)

Thistag points to raster image data. It is stored in row-major order and
must be interpreted as specified by i nt er | ace intherelated
DFTAG | D.

Lookup table

xdim* ydim* elements* NTsize bytes (xdim, ydim, elements, and NTsize
are specified in the corresponding DFTAG | D)

301 (0x012D)

DFTAG LUT ref_no
=000} PO 1 PO m
PO Pl 1 ... PLm
R
Pn_0 Pn_1 P m
PO 0 P10 --- | Pn_O
PO 1 P1_1 o P
PO m P1I_m P m

ref_no Reference number (16-bit integer)

Pn.m mth value of parameter n (sizeis specified by the DFTAG_NT
in the corresponding DFTAG_LD)

The DFTAG_LUT, sometimes called a palette, is used to assign colorsto
data values. When araster image consists of data values which are
going to be interpreted through an LUT capability, the DFTAG_LUT
should be |oaded along with the image.

The most common lookup table is the RGB lookup table which will
have X dimension = 256 and Y dimension = 1 with three elements per

April 12, 1996

6-19

NCSA HDF Specification and Developer’s Guide

DFTAG_MA

entry, one each for red, green, and blue. The interlace will be either O,
where the LUT values are given RGB, RGB, RGB, ..., or 1, where the
LUT values are given as 256 reds, 256 greens, 256 blues.

Matte channel

xdim* ydim* elements* NTsize bytes (xdim, ydim, elements, and NTsize
are specified in the corresponding DFTAG | D)

309 (0x0135)

DFTAG MA ref_no

ref_no Reference number (16-bit integer)

The DFTAG_MA data object contains transparency data which can be used
to facilitate the overlaying of images. The data consists of a 2-
dimensional array of unsigned 8-bit integers ranging from 0 to 255.
Each point in a DFTAG_MA indicates the transparency of the
corresponding point in araster image of the same dimensions. A value
of O indicates that the data at that point is to be considered totally
transparent, while a value of 255 indicates that the data at that point is
totally opaque. It is assumed that alinear scale appliesto the
transparency values, but users may opt to interpret the datain any way
they wish.

6-20

National Center for Supercomputing Applications

Tag Specifications

DFTAG_CCN

Color correction
52 bytes (usualy)
310 (0x0136)

DFTAG CCN ref_no
£
ganma red_x red_y red z
green_x green_y green z
bl ue_x bl ue_y bl ue z
white x white y white z

ref_no Reference number (16-bit integer)
gamma Gamma parameter (32-bit | EEE floating point)

red x, red y,and red z
Red x, y, and z correction factors (32-bit | EEE floating
point)

green x, green_y, and green z
Green x, y, and z correction factors (32-bit 1EEE floating
point)

bl ue_x, bl ue_y, and bl ue_z
Blue x, y, and z correction factors (32-bit |EEE floating
point)

white x, white y, and white z
White x, y, and z correction factors (32-bit | EEE floating
point)

Color correction specifies the Gamma correction for the image and color
primaries for the generation of the image.

April 12, 1996

6-21

NCSA HDF Specification and Developer’s Guide

DFTAG_CFM

Color format
String
311 (0x0137)
DFTAG CFM ref_no
character_string
ref_no Reference number (16-bit integer)

character_string Non-null terminated ASCII string (any length)

The color format data element contains a string of uppercase characters
that indicates how each element of each pixel in araster imageisto be
interpreted. Table 6.4 lists the available color format strings.

Table6.4 Color Format String Values

String Description
VALUE Pseudo-color, or just a value associated with
the pixel
RGEB Red, green, blue model
XYZ Color-space model
HSV Hue, saturation, value model
HSI Hue, saturation, intensity
SPECTRAL Spectral sampling method
DFTAG AR Aspect ratio
4 bytes
312 (0x0138)
DFTAG AR ref_no
ratio

ref_no Reference number (16-bit integer)
ratio Ratio of width to height (32-bit IEEE float)
The data for thistag is the visual aspect ratio for thisimage. The image
should be visually correct if displayed on a screen with this aspect ratio.
The data consists of one floating-point number which represents width
divided by height. An aspect ratio of 1.0 indicates a display with
perfectly square pixels; 1.33 is a standard aspect ratio used by many
monitors.

6-22 National Center for Supercomputing Applications

Tag Specifications

Composite Image Tags

DFTAG_DRAW

Draw

n*4 bytes (where n is the number of data objects that make up the
composite image)

400 (0x0190)

DFTAG_DRAW ref_no
£
tag 1 ref_1 tag 2 ref_2

ref_no Reference number (16-bit integer)

tag n Tag number of the nt" member of the draw list (16-bit
integer)

ref_n Reference number of the nth member of the draw list (16-bit
integer)

The DFTAG_DRAW data element consists of alist of tag/refs that definea
composite image. The data objects indicated should be displayed in
order. This can include several RIGs which are to be displayed
simultaneoudly. It can also include vector overlays, like DFTAG T14,
which are to be placed on top of an RIG.

Some of the elementsina DFTAG _DRAW list may be instructions about
how images are to be composited (XOR, source put, anti-aliasing, etc.).
These are defined asindividual tags.

April 12, 1996

6-23

NCSA HDF Specification and Developer’s Guide

DFTAG_XYP XY position
8 bytes
500 (Ox01F4)
DFTAG XYP ref_no
X y
ref_no Reference number (16-bit integer)
X X-coordinate (32-bit integer)
y Y -coordinate (32-bit integer)
DFTAG_XYP isused in composites and other groups to indicate an XY
position on the screen. For this, (0,0) is the lower |eft corner of the
print area. X isthe number of pixels to the right along the horizontal
axisand Y isthe number of pixels up on the vertical axis. The X and Y
coordinates are two 32-bit integers.
For example, if DFTAG_XYP ispresent in aDFTAG Rl G, the DFTAG_XYP
specifies the position of the lower left corner of the raster image on the
screen.
See also: DFTAG_DRAWIN this section
6-24 National Center for Supercomputing Applications

Tag Specifications

Vector Image Tags

DFTAG T14

DFTAG T105

Tektronix 4014
? bytes
602 (0x25A)

DFTAG T14 ref_no

>

ref_no Reference number (16-bit integer)

This tag points to a Tektronix 4014 data stream. The bytes in the data
field, when read and sent to a Tektronix 4014 terminal, will display a
vector image. Only the lower seven bits of each byte are significant.
There are no record markings or non-Tektronix codesin the data.

Tektronix 4105
? bytes
603 (0x25B)

DFTAG T105 ref_no

A

ref_no Reference number (16-bit integer)

This tag points to a Tektronix 4105 data stream. The bytes in the data
field, when read and sent to a Tektronix 4105 terminal, will be
displayed as a vector image. Only the lower seven bits of each byte are
significant. Some terminal emulators will not correctly interpret every
feature of the Tektronix 4105 terminal, so you may wish to use only a
subset of the available Tektronix 4105 vector commands.

April 12, 1996

6-25

NCSA HDF Specification and Developer’s Guide

Scientific Data Set Tags

DFTAG_NDG

Table6.5 Available NDG Tags

Numeric data group
n*4 bytes (where n is the number of data objects in the group.)
720 (0x02D0)

DFTAG_NDG ref_no
y<
tag 1 ref_1 tag 2 ref_2
ref_no Reference number (16-bit integer)

Tag number of nt" member of the group (16-bit integer)

Reference number of n" member of the group
(16-bit integer)

tag n
ref_n

The NDG data contains a list of tag/refs that define a scientific data set.
DFTAG_NDG supersedesthe old DFTAG_SDG, which became obsolete
upon the release on HDF Version 3.2. A more complete explanation of
the relationship between DFTAG_NDG and DFTAG_SDG can be found in
Chapter 4, “ Sets and Groups.”

All of the members of an NDG provide information for correctly
interpreting and displaying the data. Application programs that deal
with NDGs should read all of the elements of aNDG and process those
data objects which it can use. Even if an application cannot process all
of the objects, the objects that it can understand will be usable.

Table 6.5 lists the tags that may appear in an NDG.

Tag Description

DFTAG_SDD Scientific data dimension record (rank and
dimensions)

DFTAG SD Scientific data

DFTAG SDS Scales

DFTAG SDL Labels

DFTAG _SDU Units

DFTAG_SDF Formats

DFTAG SDM Maximum and minimum values

DFTAG SDC Coordinate system

DFTAG CAL Calibration information

DFTAG FV Fill value

DFTAG LUT Color lookup table

DFTAG LD L ookup table dimension record

DFTAG SDLNK Link to old-style DFTAG _SDG

Example

DFTAG_SDD, DFTAG_SD, DFTAG SDM

6-26

National Center for Supercomputing Applications

Tag Specifications

Suppose that an NDG contains a dimension record, scientific data, and
the maximum and minimum values of the data. These data objects can
be associated in an NDG so that an application can read the rank and
dimensions from the dimension record and then read the data array. If the
application needs maximum and minimum values, it will read them as

well.

See also: Chapter 4, “ Sets and Groups’

DFTAG_SDD Scientific data dimension record
6 + 8*rank bytes
701 (0x02BD)
DFTAG_SDD ref_no
y
rank dimil dim2 --- | dimn
DFTAG NT data NT_ref
DFTAG_NT scale NT _ref_1
DFTAG_NT scale NT ref_2
DFTAG NT scale NT ref_n
ref_no Reference number (16-bit integer)
rank Number of dimensions (16-bit integer)
dimn Number of values along the nth dimension (32-bit
integer)
data NT ref Reference number of DFTAG_NT for data

scale NT ref_n

(16-bit integer)

Reference number for DFTAG_NT for the scale for

the nth dimension (16-bit integer)

This record defines the rank and dimensions of the array in the scientific
data set. For example, aDFTAG_SDD for a 500x600x3 array of floating-

point numbers would have the following values and components.

Rank: 3

Dimensions; 500, 600, and 3.

OnedataNT
ThreescaeNTs

April 12, 1996

6-27

NCSA HDF Specification and Developer’s Guide

DFTAG_SD

DFTAG_SDS

Scientific data

NTsize*x*y* z* ... bytes (where NTsize is the size of the data NT
specified in the corresponding DFTAG _SDD and X, v, z, etc. arethe
dimension sizes)

702 (0x02BE)

DFTAG SD ref_no

o |°

= Ne
~N AP
NN W
oo p
oo x
wwhp
© N o©
N O P

43 3.6 7.1 ... 6.2

ref_no Reference number (16-bit integer)

Thistag pointsto an array of scientific data. The type of the data may
be specified by an DFTAG_NT included with the SDG. If thereis no
DFTAG _NT, the type of the data is floating-point in standard | EEE 32-bit
format. The rank and dimensions must be stored as specified in the
corresponding DFTAG_SDD. The diagram above shows a 3-dimensional
dataarray.

Scientific data scales

rank + NTsizeO*x + NTsizel*y +NTsize2*z +... bytes (where rank is
the number of dimensions, X, y, z, etc. are the dimension sizes, and
NTsizett are the sizes of each scale NT from the corresponding
DFTAG_SDD)

703 (0x02BF)

DFTAG SDS ref_no

£

is 1 is 2 is 3 --- | is_n

scale 1 scale 2 scale 3 --. | scale_n

ref_no Reference number (16-bit integer)

is n A flag indicating whether a scale exists for the nth
dimension (8-hit integer; 0 or 1)

scale n List of scale values for the nt" dimension (type specified
in corresponding DFTAG_SDD)

This tag points to the scales for the data set. The first n bytes indicate
whether thereis ascale for the corresponding dimension (1 =yes, 0 =
no). Thisisfollowed by the scale values for each dimension. The scale
consists of a simple series of values where the number of values and
their types are specified in the corresponding DFTAG_SDD.

6-28

National Center for Supercomputing Applications

Tag Specifications

DFTAG_SDL

DFTAG_SDU

DFTAG_SDF

Scientific datalabels
? bytes
704 (0x02C0)

DFTAG _SDL ref_no
£
| abel _1 | abel _2 -+« | label _n
ref_no Reference number (16-bit integer)

l abel _n Null terminated ASCII string (any length)

Thistag pointsto alist of labels for the data in each dimension of the
data set. Each label is a string terminated by anull byte (0).

Scientific data units
? bytes
705 (0x02C1)

DFTAG SDU ref_no
y
unit_1 unit_2 --- | unit_n

ref_no Reference number (16-bit integer)
unit_n Null terminated ASCII string (any length)

This tag pointsto alist of strings specifying the units for the data and
each dimension of the data set. Each unit's string is terminated by a null
byte (0).

Scientific data format
? bytes
706 (0x02C2)

DFTAG_SDF ref_no

£

format_1 format_2 .-« | fornat_n

ref_no Reference number (16-bit integer)
format_n Null terminated ASCII string (any length)
This tag pointsto alist of strings specifying an output format for the

data and each dimension of the data set. Each format string is terminated
by a null byte (0).

April 12, 1996

6-29

NCSA HDF Specification and Developer’s Guide

DFTAG_SDM

DFTAG_SDC

Scientific data max/min
8 bytes
707 (0x02C3)

DFTAG SDM ref_no

N

ref_no Reference number (16-bit integer)

nax Maximum value (typeis specified by the dataNT in the
corresponding DFTAG_SDD)

mn Minimum value (typeis specified by the data NT in the
corresponding DFTAG_SDD)

This record contains the maximum and minimum data values in the data
set. Thetypeof nax and ni n are specified by the data NT of the
corresponding DFTAG_SDD.

Scientific data coordinates
? bytes
708 (0x02C4)

DFTAG SDC ref_no

string

ref_no Reference number (16-bit integer)
string Null terminated ASCII string (any length)

This tag points to a string specifying the coordinate system for the data
set. The string is terminated by a null byte.

6-30

National Center for Supercomputing Applications

Tag Specifications

DFTAG_SDLNK

Scientific data set link
8 bytes
710 (0x02C6)

DFTAG SDLNK ref_no
£
DFTAG NDG NDG ref DFTAG SDG SIG ref

ref_no Reference number (16-bit integer)

DFTAG NDG NDG tag (16-hit integer)

NDG r ef NDG reference number (16-bit integer)

DFTAG SDG SDG tag (16-hit integer)

SOG ref SDG reference number (16-bit integer)

The purpose of thistag isto link together an old-style DFTAG_SDGand a
DFTAG_NDGin cases where the NDG contains 32-hit floating point data
and is, therefore, equivalent to an old SDG.

See also: Chapter 4, “ Sets and Groups’

April 12, 1996

6-31

NCSA HDF Specification and Developer’s Guide

DFTAG CAL Calibration information
36 bytes
731 (0x02DB)
DFTAG CAL ref_no
£
cal cal _err ‘ of f ‘ off_err data_type

ref_no Reference number (16-bit integer)
cal Calibration factor (64-bit | EEE float)
cal _err Error in calibration factor (64-bit IEEE float)
of f Calibration offset (64-bit |EEE float)
of f_err Error in caibration offset (64-bit | EEE float)

data type Constant representing the effective data type of the
calibrated data (32-bit integer)

Thistag pointsto a calibration record for the associated DFTAG_SD. The
data can be calibrated by first multiplying by the cal factor, then adding
the of f value. Also included in the record are errors for the calibration
factor and offset and a constant indicating the effective data type of the
calibrated data. Table 6.6 liststhe available dat a_t ype values.

Table 6.6 Available Calibrated Data Types

Data Type Description

DFTNT_| NT8 Signed 8-hit integer
DFTNT_U NT8 Unsigned 8-bit integer
DFTNT_I NT16 Signed 16-bit integer
DFTNT_U NT16 Unsigned 16-bit integer
DFTNT_I NT32 Signed 32-hit integer
DFTNT_U NT32 Unsigned 32-bit integer
DFTNT_FLQAT32 32-hit floating point
DFTNT_FLQOAT64 64-bit floating point

6-32 National Center for Supercomputing Applications

Tag Specifications

DFTAG_FV

Fill value

? bytes (size determined by size of dataNT in corresponding

DFTAG _SDD)

732 (0x02DC)

DFTAG FV

ref_no

ref_no
fill_val ue

N

fill _val ue

Reference number (16-bit integer)

Value representing unset data in the corresponding
DFTAG_SD (size determined by size of dataNT in

corresponding DFTAG_SDD)

This tag points to a value which has been used to indicate unset values

in the associated DFTAG_SD. The number type of the value (and,
therefore, its size) is given in the corresponding DFTAG_SDD.

April 12, 1996

6-33

NCSA HDF Specification and Developer’s Guide

Vset Tags
DFTAG_VG Vgroup
14 + 4*nelt + namelen + classlen bytes
1965 (0x07AD)
DFTAG VG ref_no
£
nel t tag 1 tag 2 --- | tag_n g
ref_1 ref_2 --- | ref_n
narmel en name cl assl en cl ass
extag exr ef versi on nmore
ref_no Reference number (16-bit integer)
nel t Number of elementsin the Vgroup (16-bit integer)
tag n Tag of the " member of the Vgroup (16-bit integer)
ref_n Reference number of the nt® member of the Vgroup (16-
bit integer)
nanel en Length of the name field (16-bit integer)
nane Non-null terminated ASCII string (length given by
nanel en)
classlen Length of the classfield (16-bit integer)
cl ass Non-null terminated ASCI|I string (length given by
cl assl en)
extag Extension tag (16-bit integer)
exr ef Extension reference number (16-bit integer)
version Version number of DFTAG_VGinformation (16-bit integer)
nore Unused (2 zero bytes)
DFTAG_VG provides a general-purpose grouping structure which can be
used to impose a hierarchical structure on the tags in the group. Any
HDF tag may be incorporated into a Vgroup, including other DFTAG VG
tags.
See also: “Vsets, Vdatas, and Vgroups’ in Chapter 4,
“Sets and Groups”
NCSA HDF Vsets, Version 2.0 for HDF
Version 3.2 and earlier
NCSA HDF User's Guide and NCSA HDF
Reference Manual for HDF Version 3.3
6-34 National Center for Supercomputing Applications

Tag Specifications

DFTAG_VH

V data description

22 + 10*nfields + Sfldnmlen n + namelen + classlen bytes
1962 (0x07AA)

DFTAG WH ref_no
£
interlace nvert ivsize nfiel ds
type 1 type 2 type n
isize 1 isize 2 isize_n
offset_1 offset_2 offset_n
order_1 order 2 order_n
fldnnien 1 fldnm 1 fldnmien 2 fldnm2
fldnmien_n fldnmn nanel en nane
cl assl en cl ass extag exr ef
versi on nore
ref_no Reference number (16-bit integer)
interlace Constant indicating interlace scheme used (16-bit
integer)
nvert Number of entriesin Vdata (32-bit integer)
ivsize Size of one Vdata entry (16-bit integer)
nfiel ds Number of fields per entry in the Vdata (16-bit integer)
type n Constant indicating the data type of the nt field of the
Vdata (16-bit integer)
isize n Sizein bytes of the nth field of the Vdata (16-bit
integer)
of fset_n Offset of the nth field within the V data (16-bit integer)
order_n Order of the n'" field of the Vdata (16-bit integer)
fldnmien n Length of the nt" field name string (16-bit integer)
fldnmn Non-null terminated ASCII string (Iength given by
corresponding f/ dnni en_n)
nanel en Length of the name field (16-bit integer)
nane Non-null terminated ASCII string (Iength given by
nanmel en)
cl assl en Length of the classfield (16-bit integer)
cl ass Non-null terminated ASCII string (Iength given by
cl assl en)
extag Extension tag (16-bit integer)
exref Extension reference number (16-bit integer)

April 12, 1996

6-35

NCSA HDF Specification and Developer’s Guide

version Version number of DFTAG_VH information (16-bit
integer)
nore Unused (2 zero bytes)
DFTAG_VH provides al the information necessary to process a
DFTAG_VS.
See dso: DFTAG_VS (this section)
“Vsets, Vdatas, and Vgroups’ in Chapter 4,
“Sets and Groups”

NCSA HDF Vsets, Version 2.0 for HDF
Version 3.2 and earlier

NCSA HDF User’'s Guide and NCSA HDF
Reference Manual for HDF Version 3.3

6-36 National Center for Supercomputing Applications

Tag Specifications

DFTAG_VS

Vdaa

nfiel ds

nvert * E (size_n = order_n bytes, wherenvert,isize_n,

and or der _n are specified in the corresponding DFTAG _VH

1963 (OxO7AB)

DFTAG VS

ref_no

ref_no

vdat a

N

vdat a

Reference number (16-bit integer)
Data block interpreted according to the corresponding
nfields

DFTAG VH(nvert = E (size_n « order_n

bytes, where nvert, i si ze_n, and order_n are
specified in the corresponding DFTAG _VH)

DFTAG VS contains a block of datawhich isto be interpreted according
to the information in the corresponding DFTAG_VH.

See dso:

DFTAG_VH (this section)

“Vsets, Vdatas, and Vgroups’ in Chapter 4,
“Sets and Groups”

NCSA HDF Vsets, Version 2.0 for HDF
Version 3.2 and earlier

NCSA HDF User’'s Guide and NCSA HDF
Reference Manual for HDF Version 3.3

April 12, 1996

6-37

NCSA HDF Specification and Developer’s Guide

Obsolete Tags

DFTAG | D8 Image dimension-8
4 bytes
200 (0x00C8)

DFTAG | D8 ref_no

N

x_dim y dim

ref_no Reference number (16-bit integer)
x_dim Length of x dimension (16-bit integer)
y dim Length of y dimension (16-bit integer)

The data for this tag consists of two 16-bit integers representing the
width and height of an 8-bit raster imagein bytes.

Thistag has been superseded by DFTAG | D.

DFTAG | P8 Image pa ette-8
768 bytes
201 (0x00C9)
DFTAG | P8 ref_no
\ Red Green Blue
R (€9 B
Rl a B1
R255 @255 B255
ref_no Reference number (16-bit integer)

Table entries 256 triples of 8-bit integers

The data for this tag can be thought of as atable of 256 entries, each
containing one value for red, green, and blue. Thefirst triple is palette
entry 0 and the last is palette entry 255.

This tag has been superseded by DFTAG_LUT.

6-38 National Center for Supercomputing Applications

Tag Specifications

DFTAG R 8 Raster image-8
xdim*ydim bytes (where xdim and ydim are the dimensions specified in
the corresponding DFTAG | D8)
202 (0x00CA)

DFTAG R 8 ref_no
ref_no Reference number (16-bit integer)
Image data 2-dimensional array of 8-bit integers

The datafor thistag is a row-wise representation of the elementary 8-bit
image data. The datais stored width-first (i.e., row-wise) and is 8 bits
per pixel. Thefirst byte of data represents the pixel in the upper-left
hand corner of the image.

Thistag has been superseded by DFTAG RI .

DFTAG ClI 8 Compressed image-8
? bytes
203 (0x00CB)
DFTAG A 8 ref_no
conpressed_i nage
ref_no Reference number (16-bit integer)

conpr essed_i nage Series of run-length encoded bytes

The datafor thistag is a row-wise representation of the elementary 8-bit
image data. Each row is compressed using the following run-length
encoding where n is the lower seven bits of the byte. The high bit
indicates whether the following n bytes will be reproduced exactly (high
bit = 0) or whether the following byte will be reproduced n times (high
bit = 1). Since DFTAG_Cl 8 and DFTAG RI 8 are basicaly
interchangeable, it is suggested that you not have aDFTAG Cl 8 and a
DFTAG_RI 8 with the same reference number.

Thistag has been superseded by DFTAG RLE.

April 12, 1996 6-39

NCSA HDF Specification and Developer’s Guide

DFTAG 118 IMCOMP image-8
? bytes
204 (0x00CC)
DFTAG |18 ref_no
conpressed_i nage
ref_no Reference number (16-bit integer)

conpressed_i nage Compressed image data

The datafor thistag is a4:1 compressed 8-bit image, using the
IMCOMP compression scheme.

Thistag has been superseded by DFTAG | MC.

6-40 National Center for Supercomputing Applications

Tag Specifications

DFTAG_SDG

Table6.7 Available SDG Tags

Scientific data group
n* 4 bytes (where n is the number of data objectsin the group)
700 (0x02BC)

DFTAG_SDG ref_no
£
tag 1 ref_1 tag 2 ref_2

ref_no Reference number (16-bit integer)
tag n Tag number of nth member of the group (16-bit integer)

ref_n Reference number of n™ member of the group (16-bit
integer)

The SDG data element contains alist of tag/refs that define a scientific
data set. All of the members of the group provide information required
to correctly interpret and display the data. Application programs that
deal with SDGs should read al of the elements of an SDG and process
those which it can use. Even if an application cannot process all of the
objects, the objects that it can understand will be usable.

Table 6.7 lists the tags that may appear in an SDG.

Tag Description

DFTAG SDD Scientific data dimension record (rank and
dimensions)

DFTAG SD Scientific data

DFTAG SDS Scales

DFTAG SDL Labels

DFTAG SDU Units

DFTAG_SDF Formats

DFTAG_SDM Maximum and minimum values

DFTAG SDC Coordinate system

DFTAG SDT Transposition (obsolete)

DFTAG SDLNK Link to new DFTAG _NDG

Example

DFTAG SDD, DFTAG SD, DFTAG SDM

Assume that a dimension record, scientific data, and the maximum and
minimum values of the data are required to read and interpret a particular
data set. These data objects can be associated in an SDG so that an
application can read the rank and dimensions from the dimension record
and then read the data array. If the application needs the maximum and
minimum values, it will read them as well.

Thistag has been superseded by DFTAG_NDG.

See also: Chapter 4, “ Sets and Groups’

April 12, 1996

6-41

NCSA HDF Specification and Developer’s Guide

DFTAG_SDT Scientific data transpose
0 bytes
709 (0x02C5)

DFTAG SDT ref_no —1

ref_no Reference number (16-bit integer)

The presence of thistag in a group indicates that the data pointed to by
the corresponding DFTAG_SDisin column-magjor order, instead of the
default row-major order. No data is associated with this tag.

Thistag is no longer written by the HDF library. When it is
encountered in an old file, it isinterpreted as originally intended.

6-42 National Center for Supercomputing Applications

Chapter

Portability Issues

Chapter Overview

The NCSA implementation of HDF is accessible to both C and
FORTRAN programs and is implemented on many different machines
and several operating systems. There are important differences between
C and FORTRAN, and among implementations of each language,
especially FORTRAN. There are also important differences among the
machines and operating systems that HDF supports.

If HDF isto be a portable tool, these differences must be constructively
addressed. This chapter describes many of these differences, discusses
the problems and issues associated with them, and presents the methods
employed in the HDF implementation to reduce their impact.

The HDF Environment

The list of machines and operating systems on which HDF is
implemented is steadily growing. For reasons that this chapter will
make clear, the number of NCSA -supported HDF platformsis growing
slowly. Every timeaplatform is added, additional code must be written
to address concerns of memory management, operating system and file
system differences, number representations, and differencesin
FORTRAN and C implementations on that system.

April 12, 1996

7-1

NCSA HDF Specification and Developer’s Guide

Supported Platforms

As of thiswriting, NCSA supports the platforms listed in Table 7.1.

Table7.1 NCSA-supported HDF Platforms

Language Standards

Guidelines

Hardware Platform Operating System
Convex Concentrix
Cray X-MP, Y-MP, Cray 2 UNICOS
DEC Alpha Ultrix
DECStation Ultrix
HP 9000 HPUX
IBM PC MS DOS, Windows 3.1
IBM RS/6000 AIX
IBM RT UNIX
Macintosh MPW Shell
NeXT NeXTStep
Silicon Graphics UNIX
Sun Sparc UNIX
Vax VMS

1

HDF has also been ported to several platforms that NCSA does not
currently support. These include Alliant, Apollo (Domain), HP 3000,
Stellar, Amiga, Symbolics, Fujitsu, and IBM 3090 (MVS).

Unfortunately, not all compilers are the same. FORTRAN compilers
often differ in the ways they pass parameters, in the identifier naming
conventions they employ, and in the number types that they support.
Similarly, though generally not as drastically, C compilers differ in the
number types that they support and in their adherence to the ANSI C
Sandard.

To minimize the difficulties caused by these differences, the HDF
source code is written primarily in the following dialects:

+ FORTRAN 77

e ANSIC

« Theorigina C defined by Kernighan and Ritchiel, hereafter

referredtoasold C

Almost all platforms have C and FORTRAN compilers that adhere to
at least one of these standards.

When time and resources permit, NCSA attempts to support features or
variations in other dialects of C and FORTRAN, particularly on
platforms that are important to NCSA users. Much of the remainder of
this chapter addresses these efforts.

One cannot over stress the importance of following the guidelines
outlined in this chapter. 1t may take longer to write code and it may be
difficult to adapt your coding style, but the long-term benefits, in terms
of portability and maintenance costs, will be well worth the effort.

The version of C described in the first edition of The C Programming Language, by Brian Kernighan and Dennis Ritchie,
published by Prentice-Hall.

7-2

National Center for Supercomputing Applications

Portability |ssues

Organization of Source Files

Header Files

2

Three types of files appear in the HDF source code directory:

» Header files

» Source codefiles

* A makefile
Header files and source code files are organized by application area. All
of the functions that apply to a particular application area are stored in
three sourcefiles, and al the definitions and declarations that apply to
that application are stored in a corresponding header file. The makefile
describes the dependencies among the source and header files and
provides the commands required to compile the corresponding libraries
and utilities.

Certain application modules require header files. The header file
df an. h, for example, contains definitions and declarations that are
unique to the annotation interface.

There are also several generd header filesthat are used in compiling the
librariesfor all application areas:

hdf . h, hdfi.h?
hdf . h contains declarations and definitions for the common data
structures used throughout HDF, definitions of the HDF tags,
definitions of error numbers, and definitions and declarations
specific to the genera purpose interface. Since hdf. h dependson
hdfi. h,itincludes hdfi.h via #i ncl ude.

hdfi . h containsinformation specific to the various NCSA-
supported HDF computing environments, environmental
parameters that need to be set to particular values when compiling
the HDF libraries, and machine dependent definitions of such
things as number types and macros for reading and writing
numbers.

When porting HDF to anew system, only hdfi . h andthe
makefile should need to be modified, though there may be
exceptions.

Itisnormally agood ideatoinclude hdf. h (andtherefore
indirectly hdfi . h)inuser programs, though users usually need
not be aware of its contents.

hproto. h
Thisfile contains ANSI C prototypes for all HDF C routines. It
must be included in ANSI C programs that call HDF routines.

constants. i
Thisfileis for usein FORTRAN programs. It contains important
constants, such as tag values, that are defined in hdf.h. Systems
with FORTRAN preprocessors might be able to include thisfile
via #i ncl ude statements or their equivalent.

df func.i
Thisfileis for usein FORTRAN programs. It contains
declarations of all HDF FORTRAN-callable functions. Systems
with FORTRAN preprocessors might be able to include thisfile
via #i ncl ude statements or their equivalent.

In earlier implementations of HDF, these files were called df. h and dfi . h. Starting with HDF Version 3.2, the general

purpose layer of HDF was completely rewritten and all routine names were changed from df * to hdf *.

April 12, 1996

7-3

NCSA HDF Specification and Developer’s Guide

Source Code Files

All HDF operations are performed by routines written in C. Hence,
even FORTRAN calls to HDF result in calls to the corresponding C
routines. Because of the problems described bel ow the relationships
between the C routines and the corresponding FORTRAN routines can
be confusing. This section discusses the C and FORTRAN source file
organization. It isfollowed by discussions of problems userswill face
in the FORTRAN-C interface.

HDF interfaces typically have three or four associated files. For
example, the scientific data set (SDS) interface is associated with the
following files: df sd. h, df sd. c,df sdf . c,and df sdff.f.

These filesfill the following roles:

Header files
The*. h filesare header files.

Normal C routines
These routines do the actual HDF work. The others are used
to transfer control and datafrom a FORTRAN environment to
a C environment.

Theseroutinesareinthe*. ¢ files, asin df sd. c. Every call
to HDF, whether from C or FORTRAN, ultimately resultsin
acall to one of these routines.

C routines that are directly callable from FORTRAN
These routines provide recognizable function names to the
linker. They may also perform operations on data they receive
from the FORTRAN routines that call them, such as
transferring a FORTRAN string to alocal C data area.
Examples are provided below.

Theseroutinesareinthe*f . ¢ files, suchas df sdf.c. The
f meansthat the routines can be called from FORTRAN; the
. ¢ meansthat they are C source code.

FORTRAN routines that perform some operation on the

parameters that C would be unable to perform, before and/or

after calling the corresponding C routine
These routines are required, for example, when one of the
parameters is a string. The corresponding C routine has no
way of knowing the length of the string unless it is explicitly
given the length by the FORTRAN routine.

Theseroutinesareinthe *ff.f files, suchas df sdff.f.
The ff meansthat the routines perform some FORTRAN
operation that C cannot perform and that they are to be called
from FORTRAN; the . f meansthat they are FORTRAN
source code.

Theroles of these different types of source file types will become
clearer aswelook at some of the problems that arise in interfacing C
and many different implementations of FORTRAN.

7-4

National Center for Supercomputing Applications

Portability |ssues

File naming conventions

The naming conventions for HDF library source codefiles are
complicated by several factors. Because HDF must accommodate a
wide variety of platforms, all files that will compile to object modules
must have names that are unique in the first 8 characters, ignoring case.
The difficulties involved in maintaining a FORTRAN-callable interface
to alibrary that is primarily written in C further complicate the naming
of source codefiles.

Passing Strings Between FORTRAN and C

Passing Strings from
FORTRAN to C

One of the most important differences between FORTRAN and C
compilersisin the way strings are represented. Different compilers use
different data structures for strings, and supply string length information
in different ways.

When strings are passed between FORTRAN and C routines, they may
need to be converted from one representation to the other. C compilers
store strings in an array of type char , terminated by anull byte (\ 0).
The name of a string variable is equivalent to a pointer the first
character in the string. FORTRAN compilers are not consistent in the
ways that they store strings.

Two pieces of information must be acquired before FORTRAN can pass
astring to C:

The string’ s length

The string’ s address

The string’ s length is determined by invoking the standard FORTRAN
function | en(), which returns the length of a string. Since C expects
anull byte at the end of a string, care must be taken that this null byte
does not overwrite useful information in the FORTRAN string.

Determining the string’ s address is more difficult because of the
different ways that different FORTRAN implementations store strings.
Themacro _fcdtocp (FORTRAN character descriptor to C pointer) is
used to acquire thisinformation. _f cdt ocp isone of the elements that
must be customized for each platform. The following paragraphs
discuss severa existing customized implementations:

* UNICOS FORTRAN stores stringsin astructure called _f cd
(FORTRAN character descriptor). _f cdt ocp isabuilt-in UNICOS
function that returns the string’ s address. (Since UNICOS provides
this function, HDF omits the corresponding macro definition on
UNICOS systems.)

* VMSFORTRAN uses a string descriptor structure that provides the
string’ s address and length. When compiled under VMS, _f cdt ocp
extracts the string's address from that structure.

* Most other FORTRAN compilers supported by HDF store strings
just as C does, in character arrays with the array name identifying
the array's address. In such situations, nothing special needsto be
done to pass a string from FORTRAN to C, except to add a NULL
byte..

An HDF FORTRAN call that involves passing a string results in the
following sequences of actions:

April 12, 1996

7-5

NCSA HDF Specification and Developer’s Guide

1. A FORTRAN filter routine determines the length and addressin
memory of the string. Since this filter isa FORTRAN routine, it
can befound in the appropriate *ff.f file.

2. The FORTRAN filter then calls a C routine, to which it passes all
parameters from the initial call the string's length.

3. The C routine converts the FORTRAN string to a C string by
copying it to aC array of type char and appending anull byte.
Since this C routine serves as alink between a FORTRAN filter
and the corresponding C interface call, it can befound in the
appropriate *f. ¢ file

4. This C routine then calls the HDF C routine that performs the
actual work.

This processisillustrated in Figure 7.1

Figure 7.1. Sequence of Events When a FORTRAN Call Includes a String as a Parameter

User's program

T S o User's FORTRAN program calls
ret = dsgdin('nyfile’, rank, ...) dsgdi ms. The parameter nyfile

is a string.

i bdf.a (the HDF library)

~

df sdFf . f

dsgdi m() The FORTRAN function dsgdi m
9 calls the C function dsi gdi m

dsi gdi (fi | enarre ,rank , ..., len(filenane)) adding an extra parameter--the
o length of the filenane parameter.

df sdF. c

o dsi gdi m converts the

dsi gdi m() FORTRAN string stored in
filenanme to a C string, then
calls DFSDget di ns.

DFSDget di ms(fn, prank,...)

df sd. c

DFSDget di ns performs the
actual HDF function, getting the
rank and dimension of the next
scientific data set in the file.

DFSDget di s ()

7-6 National Center for Supercomputing Applications

Portability |ssues

Passing Strings from C
to FORTRAN

When strings are passed from C to FORTRAN, the reverse procedure is
followed. First, a string pointer is allocated within the FORTRAN
routine's data area. (It is assumed that the space pointed to has already
been allocated, and is sufficiently large to hold the string.) The string
isthen copied from the C data areato the FORTRAN data area.

Finally, the FORTRAN string's data area is padded with blanks, if

necessary.

Function Return Values between FORTRAN and C

When a FORTRAN routine calls a C function, it always expects a
return value from that function. Unfortunately, C functions do not
always return arguments in a FORTRAN-compatible format.

To solve this problem, some FORTRAN compilers offer the option of
controlling the form of the return value from afunction. For example,
Language Systems FORTRAN for the Macintosh requires that all C
function declarations be prepended by theword pascal sothat the
return value can be recognized by a FORTRAN routine that callsit, as
in:

pascal int dsgrang(void *pmax, void *pnin)

Since C always expects return values to be passed by value rather than,
say, by reference, it isimportant to coerce FORTRAN functions to do
the same. Thisisaccomplished by defining amacro FRETVAL thatis
prepended to the declaration of every FORTRAN-callable C function.
For example:

FRETVAL(i nt)
dsgrang(voi d *prmax, void *pnin)

If Language Systems FORTRAN isto beused, FRETVAL isdefinedin
hdfi . h asfollows:

f defined(MAQ /* with LS FORTRAN */
define FRETVAL(X) pascal x
#endi f

Differences in Routine Names

HDF generally employs standard C conventions in naming routines.
But many FORTRAN compilers impose varying restrictions on the
length, character set, and form of identifiers, some of which are
considerable more restrictive than the C conventions. Therefore, an
extra effort must be made to accommodate those FORTRAN compilers.

To address thisissue, HDF defines a set of preprocessor flagsin
hdfi . h. Then conditional compilation, with #i f def statementsin
the source code , produces routine names that the target system’s
FORTRAN will understand.

April 12, 1996

7-7

NCSA HDF Specification and Developer’s Guide

Case Sensitivity

The HDF Solution

Appended Under scores

C compilers are case sensitive; uppercase and lowercase |etters are
recognized as different characters. Many FORTRAN compilers are not
case sensitive; they allow users to use uppercase and lowercase letters
while naming routines in the source code, but the names are converted
to al uppercase or al lowercase in the object module symbol tables.
Routine name recognition problems are common when routines
compiled by a case sensitive compiler are to be linked with routines
compiled by a non-case sensitive compiler.

For example, the UNICOS FORTRAN compiler allows you to name
routines without regard to case, but produces object module symbol
tables with the routine namesin all uppercase. UNICOS C, on the
other hand, performs no such conversion.

Consider the HDF routine Hopen. Hopen iswrittenin C, so the HDF
library symbol table contains the name Hopen. Suppose you make the
following call in your UNICOS FORTRAN program:

file_id = Hopen(' nyfile', ...)

The FORTRAN compiler will create an object module symbol table
with the routine name HOPEN. When you link it to the HDF library, it
will find Hopen but not HOPEN, and will generate an unsatisfied
externa reference error.

HDF supports the following non-case sensitive compilers:

* VMSFORTRAN

* UNICOS FORTRAN

* Language Systems FORTRAN.

All of these compilers convert identifiersto all uppercase when building
an object module symbol table. In the following discussion, they are
referred to as all-uppercase compilers.

HDF addresses the all-uppercase compiler problem in the platform-
specific section of hdfi . h wherethe DF_CAPFNAMES flag is defined.
With conditional compilation, HDF generates all-uppercase routine
names and symbol table entries.

Once again, consider UNICOS. The UNICOS section of hdfi . h
contains the following line:

#def i ne DF_CAPFNAMES

The *f. c filescontain corresponding conditional sectionsthat produce
all-uppercase routine names. For example, the function name Fun can
be redefined as FUN:

#i f def DF_CAPFNAMES
define Fun FWN
#endi f /* DF_CAPFNAMES */

Differing compiler conventions create a similar problem in their use of
the underscore (_) character. Many compilers, including most C
compilers, prepend an underscore to all external symbolsin the object
module symbol table. The linker then looks for external symbolsin
other symbol tables with the prefixed underscore.

Many FORTRAN compilers also append an underscore to identify
external symbols. Since C compilers do not generally do this, external

7-8

National Center for Supercomputing Applications

Portability |ssues

The HDF Solution

Short Names vs. Long
Names

referencesin FORTRAN-generated object modules will not recognize
externals with the same names in C-generated modules.

For example, the FORTRAN compiler on the CONVEX system places
an underscore both at the beginning and at the end of routine names,
while the C compiler places an underscore only at the beginning.

Since FUN isaC function, it appears under thename _FUN inthe
object module containing it. Now suppose you make the following
cal in aFORTRAN program:

x = FUN(y)
The FORTRAN compiler will create an object module symbol table
with the routine name _FUN_. When you link it to the C module, the

linker will be unabletolink _FUN and _FUN_and will generate an
unsatisfied external reference error.

Like the al-uppercase compiler problem, thisissueisresolved in the
platform-specific sectionsof hdfi . h and with conditional sections of
code that append an underscore to C routine names on platforms where
the FORTRAN compiler expectsit.

Thisisimplemented asfollows. The FNAME_POST_UNDERSCCRE flagis
defined in the platform-specific section of hdfi . h for every platform
whose FORTRAN compiler requires appended underscores. Similarly,
the FNAME_PRE_UNDERSCOORE flag is defined on platforms where the
FORTRAN compiler expects prepended underscores. The macro FNAVE
isthen defined to append and/or prepend underscores as required.

The FNAME macro isthen applied to each routine in the modulein
which it isactually defined (including in hpt r ot o. h), adding the
appropriate underscores.

Consider the above examplein which Fun wasrenamed FUN. The
actual definition appears as follows:

#i f def DF_CAPFNAMES

define Fun FNAME(FUN)
#endi f /* DF_CAPFNAMES */

In the C implementations supported by HDF, identifiers may be any
length with at least the first 31 characters being significant.
FORTRAN compilers differ in the maximum lengths of identifiers that
they allow, but al of those supported by HDF allow identifiersto be at
least seven characterslong.

To deal with the discrepancies between identifier lengths allowed by C
and those allowed by the various FORTRAN compilers, a set of
equivalent short names has been created for use when programming in
FORTRAN. For every HDF routine with a name more than seven
characterslong, thereis an identical routine whose nameis seven or
fewer characterslong.

For example, the routines DFSDget di ns (in df sd. c) and dsgdi ns
(in df sdf f. f) arefunctionally identical.

April 12, 1996

7-9

NCSA HDF Specification and Developer’s Guide

Differences Between ANSI C and Old C

The current HDF release supports both ANSI C and old C compilers.
ANSI Cis preferred because it has many features that help ensure
portability; unfortunately, many important platforms do not support
full ANSI C. The HDF code determines whether ANS| C is available
fromtheflag _ STDC . If ANSI Cisavailable on aplatform, then
__STDC__ isdefined by the compiler.3

The most noticeable difference between ANSI C and old C isin the way
functions are declared. For example, in ANSI C the function
DFSDset di ms() isdeclared withasingleline:

int DFSDsetdinms(intn rank, int32 dinsizes[])

In old C the same function is declared as follows:

i nt DFSDsetdi ns(rank, dinsizes)
intn rank;
int32 dinsizes[];

HDF accommodates these differences by defining the flag PROTOTYPE
in hdfi.h. PROTOTYPE isused for every function declarationin a
manner similar to the following example:

#i f def PROTOTYPE

int DFSDsetdins(intn rank, int32 dinsizes[])
#el se

i nt DFSDset di ns(rank, dinsizes)

intn rank;

int32 dinsizes[];

#endi f /* PROTOTYPE */

Note that prototypes are supported by some C compilers that are not
otherwise ANSI-conformant. In such situations, PROTOTYPE is defined
eventhough _ STDC _ isnot.

Another difference between old C and ANSI C isthat ANSI C supports
function prototypes with arguments. (Old C also supports function
prototypes, but without the argument list.) , This feature helpsin
detecting errorsin the number and types of arguments. This difference
is handled by means of amacro PROTO, which is defined as follows:

#i f def PROTOTYPE

#def i ne PROTQ(x) x

#el se

#defi ne PROTQ(x) ()

#endi f

This macro is applied as in the following example:

extern int32 Hopen
PROTQ((char *path, intn access, int16 ndds));

When PROTOTYPE isdefined, PROTO causes the argument list to stay
asitis. When PROTOTYPE isnot defined, PROTO causes the argument
list to disappear.

3 __STDC__ is generally defined by ANSI-conforming C compilers. Some C compilers are not entirely ANSI-conforming,
yet they conform well enough that the HDF implementation can treat them as if they were. In such cases, it is permissible
to define __STDC__ by adding the option - D__STDC__ tothe cc line in the makefile.

7-10 National Center for Supercomputing Applications

Portability |ssues

Type Differences

Size differences

Platforms and compilers also differ in the sizes of numbers that they
gn to different data types, in their representations of different
number types, and in the way they organize aggregates of numbers
(especially structures).

The same number type can be different sizes on different platforms.
Thetype i nt, for example, is 16 bits to many IBM PC compilers, 48
bits to some supercomputer compilers, and 32 bits on most others.
This can cause problems that are difficult to diagnose in code, like the
HDF code, that depends in many places on numbers being the right
size.

HDF handles this problem by fully defining all variable types and
function datatypesvia t ypedef , including the number of bits
occupied. All parameters, members of structures, and static, automatic,
and external variables are so defined .

The HDF data types include the following (types with the prefix u are

unsigned.)
int8
uint8
int16
uintl6
int32
uint32
float32
float64
intn
uintn

For each machine, typedefs are declared that map all of the data types
used into the best available types. For example, i nt 32 isdefined as
follows for Sun's C compiler:

typedef long int int32;

Unfortunately, the HDF data types do not always map exactly to one of
the native data types. For example, the Cray UNICOS C compiler does
not support a 16-bit data type. In such instances, HDF uses the best
available match and care is taken to minimize potential problems.

Thedatatypes i ntn and ui nt n arefor situationswhereit can be
determined that number type size is unimportant and that a 16-hit
integer is large enough to hold any value the number can have. In
such cases, the native integer type (or unsigned integer type) of the host
machine isused. Experience indicates that substantial performance
gains can be achieved by using i ntn or ui ntn incertain
circumstances.

April 12, 1996

7-11

NCSA HDF Specification and Developer’s Guide

Number Representation

Byte-order and Structure
Representations

One of the keys to producing a portable file format isto ensure that
numbers that are represented differently on different machines are
converted correctly when moved from machine to machine. HDF
provides conversion routines to convert between native representations
and a standard representation that is actually used in the HDF file. This
ensures that HDF data will always be interpreted correctly, regardless of
the platform on which it is read or written. Details of this process will
be included in alater edition of this manual.

Even when the basic bit-representation of constants or aggregates like
structures is the same across platforms, the ways that the bits are
packed into aword and the order in which the bits are laid out can differ.
For example, DEC and Intel-based machines generally order bytes
differently from most others. And the C compiler on a Cray, with a
64-bit word, packs structures differently from those on 32-bit word
machines.

Differences in byte order among machines are handled in either of two
ways. When the data to be written (or read) includes non-integer data
and/or alarge array of any type of data, conversion routines mentioned
in the previous section, “Number Representation,” areinvoked. When
anindividual integer isto be written (or read), an ENCCDE or DECODE
macro is used.

The following ENCODE and DECODE macros are available for 16-bit
and 32-hit integers:

| NT16ENCCDE

U NT16ENCCDE

| NT32ENCCDE

U NT32ENCCDE

| NT16DECCDE

U NT16DECCDE

| NT32DECCDE

U NT32DECCDE

The ENCODE macros write integers to an HDF file in a standard
format regardless of the word-size and byte order of the host machine.

Likewise, the DECODE macros read integers from a standard format in
an HDF file and provide the integers in the required byte order and word
size to the host machine.

Since the ENCODE and DECODE macros deal with both byte order and
word size, they are also used in reading and writing record-like
structures. For example, an HDF data descriptor consists of two 16-bit
fields followed by two 32-hit fields, asimplied by the following C
declaretion:

struct {
uint 16 tag;
uint16 ref;
ui nt 32 of fset;
ui nt 32 | engt h;
}

Even though this structure might occupy 12 bytes on one platform or
32 bytes on another (e.g., a Cray), it must occupy exactly 12 bytesin
an HDF file. Furthermore, some machines represent the numbers
internally in different byte orders than others, but the byte order must
always be big-endian in an HDF file. The ENCODE and DECODE

7-12

National Center for Supercomputing Applications

Portability |ssues

macros ensure that these values are always represented correctly in HDF
files and as presented to any host machine.

Access to Library Functions

Degspite standardization efforts, function libraries often differ in
significant ways. At least three types of functions require special
treatment in the HDF implementation:

File I/O
Some platforms use 16-bit values for the element size and the
number of elements to write or read, while others use 32-bit
values. This must be considered when working with either stream
or system level 1/0 functions (i.e., the functions associated with
the fopen() and open() calls).

Memory allocation and release
First, 16-bit machines use a 16-bit value to indicate the number of
bytesto allocate or release at one time. Second, certain operating
systems (notably MS Windows and MAC/OS) don't have
mal | oc() and free() cals. Theseoperating systemsuse
handles for allocating memory and require different function calls.

Memory and string manipulation
Thesefunctions (e.g., mencpy(), mencnp(), strcpy(),and
strl en()) require dightly different function names under different
memory modelsin MS DOS and under MS Windows than on
most other systems.

HDF accommaodates these specia situations by defining appropriate
macros in the machine-specific sectionsof hdfi . h.

April 12, 1996

7-13

Appendix A Tags and Extended Tag Labels

Thetablesin this appendix lists al of the NCSA-supported HDF tags
and the labels used to identify extended tags.

Tags
Table A.1 lists all the NCSA-supported HDF tags with the following
information:
Tag Thetag itself

Tag number The regular tag number in decimal (top) and
hexadecimal (bottom)

Extended tag number
The extended tag number used with linked blocks and
external data elementsin decimal and (hexadecimal)

Full name The tag name, a descriptive English phrase

Section The section of Chapter 6, “Tag Specifications,” in
which thetag is discussed

TableA.1 NCSA-supported HDF Tags

Extended .
Tag Number Nﬁﬁ?ber Full Name Section

DFTAG AR 312 Aspect ratio Raster Image Tags
0x0138

DFTAG_CAL 731 Cdlibration information Scientific Data Set Tags
0x0208B

DFTAG OON 310 Color correction Raster Image Tags
0x0136

DFTAG CFM 311 Color format Raster Image Tags
0x0137

DFTAG O 8 203 Compressed image-8 Obsolete Tags
0x00CB

DFTAG DI A 105 Dataidentifier annotation Annotation Tags
0x0069

April 12, 1996 A-1

NCSA HDF Specification and Developer’s Guide

TableA.1 NCSA-supported HDF Tags (Continued)
Extended .
Tag Number | Number Full Name Section

DFTAG DI L 104 Dataidentifier label Annotation Tags
0x0068

DFTAG DRAW 400 Draw Composite Image Tags
0x0190

DFTAG FD 101 File description Annotation Tags
0x0065

DFTAG FID 100 Fileidentifier Annotation Tags
0x0064

DFTAG FV 732 Fill value Scientific Data Set Tags
0x02DC

DFTAG GREYJPEG | 14 8-bit JPEG compression Compression Tags
0x000E information

DFTAG I D 300 Image dimension Raster Image Tags
0x012C

DFTAG | D8 200 Image dimension-8 Obsolete Tags
0x00C8

DFTAG |18 204 IMCOMP image-8 Obsolete Tags
0x00CC

DFTAG | MC 12 IMCOMP compressed data Compression Tags
0x000C

DFTAG | P8 201 Image palette-8 Obsolete Tags
0x00C9

DFTAG JPEG 13 24-bit JPEG compression Compression Tags
0x000D information

DFTAG LD 307 LUT dimension Raster Image Tags
0x0133

DFTAG LUT 301 Lookup table Raster Image Tags
0x012D

DFTAG MA 309 Matte channel Raster Image Tags
0x0135

DFTAG MD 308 Matte channel dimension Raster Image Tags
0x0134

DFTAG M 107 Machine type Utility Tags
0x006B

DFTAG NDG 720 Numeric data group Scientific Data Set Tags
0x0200

DFTAG_NT 106 Number type Utility Tags
0x006A

DFTAG NULL 1 No data Utility Tags
0x0001

DFTAG R 302 16686 Raster image Raster Image Tags
0x012E | Ox412E

DFTAGR 8 202 Raster image-8 Obsolete Tags
0x00CA

A-2 National Center for Supercomputing Applications

Tags and Extended Tag Labels

TableA.1 NCSA-supported HDF Tags (Continued)
Extended .
Tag Number | Number Full Name Section

DFTAG R G 306 Raster image group Raster Image Tags
0x0132

DFTAG RLE 11 Run length encoded data Compression Tags
0x000B

DFTAG SD 702 17086 Scientific data Scientific Data Set Tags
0x02BE | Ox42BE

DFTAG SDC 708 Scientific data coordinates Scientific Data Set Tags
ox02c4

DFTAG SDD 701 Scientific data dimension Scientific Data Set Tags
0x02BD record

DFTAG SDF 706 Scientific data format Scientific Data Set Tags
0ox02C2

DFTAG SDG 700 Scientific data group Obsolete Tags
0x02BC

DFTAG SDL 704 Scientific datalabels Scientific Data Set Tags
0x02Q0

DFTAG SDLNK 710 Scientific data set link Scientific Data Set Tags
0x02C6

DFTAG_SDM 707 Scientific data max/min Scientific Data Set Tags
0x02C3

DFTAG SDS 703 Scientific data scales Scientific Data Set Tags
0x02BF

DFTAG SDT 709 Scientific data transpose Obsolete Tags
0x02C5

DFTAG SDU 705 Scientific data units Scientific Data Set Tags
0x02C1

DFTAG T105 603 Tektronix 4105 Vector Image Tags
0x25B

DFTAG T14 602 Tektronix 4014 Vector Image Tags
0x25A

DFTAG TD 103 Tag description Annotation Tags
0x0067

DFTAG TI D 102 Tag identifier Annotation Tags
0x0066

DFTAG VERSION | 30 Library version number Utility Tags
0x001E

DFTAG VG 1965 Vgroup Vset Tags
0x07AD

DFTAG WH 1962 Vdata description Vset Tags
Ox07AA

DFTAG VS 1963 18347 Vdaa Vset Tags
0x07AB | Ox47AB

DFTAG XYP 500 X-Y position Composite Image Tags
0x01F4

April 12, 1996

A-3

NCSA HDF Specification and Developer’s Guide

Extended Tag Labels

Table A.2 lists labels used to identify HDF extended tags. The table
includes the following information:

Extended tag |abel

The label, which appears as the first element of the
extended tag description record

Physical storage method
The dternative storage method indicated by the label

TableA.2 Extended Tag L abels

Extended Tag L abel Physical Storage Method

EXT_EXTERN Externa file element
EXT_LI NKED Linked block element

A-4

National Center for Supercomputing Applications

