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Acronyms and Definitions

ACD	 Aboveground	carbon	density
AIS	 Airborne	imaging	spectrometer
ALI	 Advanced	Land	Imager
Amax	 Maximum	rate	of	photosynthesis
APAR	 Absorbed	photosynthetically	active	radiation
ATLAS	 Advanced	Topographic	Laser	Altimeter	System
AVIRIS	 Airborne	visible/infrared	imaging	spectrometer
CAO	 Carnegie	Airborne	Observatory
CASI	 Compact	Airborne	Spectrographic	Imager
CHRIS	 Compact	High-Resolution	Imaging	Spectrometer
DASF	 Directional	area	scattering	factor
EnMAP	 Environmental	Mapping	and	Analysis	Program
EO-1	 Earth	Observing-1	(Hyperion)
ESA	 European	Space	Agency
ETM+	 Enhanced	Thematic	Mapper	Plus
ETR	 Electron	transport	rate
EWT	 Equivalent	water	thickness
GLAS	 Geoscience	Laser	Altimeter	System
HSI	 Hyperspectral	imaging
HyspIRI	 Hyperspectral	and	Infrared	Imager
ICESat	 Ice,	Cloud,	and	land	Elevation	Satellite

Jmax	 Maximum	electric	transport	rate
LAD	 Leaf	angle	distribution
LAI	 Leaf	area	index
LiDAR	 Light	detection	and	ranging
LMA	 Leaf	mass	per	area
LUE	 Light	use	efficiency
LVIS	 Land,	Vegetation,	and	Ice	Sensor
MCH	 Mean	canopy	profile	height
N	 Nitrogen
NCALM	 National	Center	for	Airborne	Laser	Mapping
NDVI	 Normalized	difference	vegetation	index
NEON	 National	Ecological	Observatory	Network	
NIR	 Near	infrared
NPP	 Net	primary	productivity	
NPQ	 Nonphotochemical	quenching
NPV	 Nonphotosynthetic	vegetation
NSF	 National	Science	Foundation
PAR	 Photosynthetically	active	radiation
PLSR	 Partial	least	squares	regression
PRI	 Photochemical	Reflectance	Index
SIF	 Solar-induced	fluorescence
SLA	 Specific	leaf	area
SNR	 Signal-to-noise	ratio
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SWIR	 Shortwave	infrared
UAV	 Unmanned	aerial	vehicle
Vcmax	 Maximum	rate	of	carboxylation
VNIR	 Visible	to	near	infrared
VSWIR	 Visible	to	shortwave	infrared

16.1  Introduction

Forests	store	about	three-quarters	of	all	carbon	stocks	in	vegeta-
tion	in	the	terrestrial	biosphere	and	harbor	an	array	of	organisms	
that	comprise	most	of	this	carbon	(IPCC	2000).	The	distribution	
of	carbon	and	biodiversity	in	forests	is	spatially	and	temporally	
heterogeneous.	 The	 complex,	 3D	 arrangement	 of	 plant	 species	
and	 their	 tissues	 has	 always	 challenged	 field-based	 studies	 of	
forests.	 Remote	 sensing	 has	 long	 endeavored	 to	 address	 these	
challenges	 by	 mapping	 the	 cover,	 structure,	 composition,	 and	
functional	 attributes	 of	 forests,	 and	 new	 approaches	 are	 con-
tinually	being	developed	to	increase	the	breadth	and	accuracy	of	
remote	measurements.

Over	 the	past	 few	decades,	 two	technologies—hyperspectral	
imaging	(HSI)	and	light	detection	and	ranging	(LiDAR)—have	
rapidly	 advanced	 from	 use	 in	 testbed-type	 research	 to	 appli-
cations	 ranging	 from	 ecology	 to	 land	 management.	 HSI,	 also	
known	 as	 imaging	 spectroscopy,	 involves	 the	 measurement	 of	
reflected	 solar	 radiance	 in	 narrow,	 contiguous	 spectral	 bands	
that	 form	 a	 spectrum	 for	 each	 image	 pixel.	 LiDAR	 uses	 emit-
ted	laser	pulses	in	a	scanning	pattern	to	determine	the	distance	
between	 objects	 such	 as	 canopy	 foliage	 and	 ground	 surfaces.	
Individually,	HSI	and	LiDAR	are	advancing	the	study	of	forests	
at	 landscape	 to	global	 scales,	uncovering	new	spatial	and	 tem-
poral	patterns	of	forest	biophysical	and	biochemical	properties,	
as	 well	 as	 physiological	 processes.	 When	 combined,	 HSI	 and	
LiDAR	can	provide	ecological	detail	at	spatial	scales	unachiev-
able	 in	 the	 field.	 This	 chapter	 discusses	 HSI	 and	 LiDAR	 data	
sources,	techniques,	applications,	and	challenges	in	the	context	
of	forest	ecological	research.

16.2  HSI and LiDAR Data

16.2.1  HSI Data Sources

The	availability	of	HSI	for	ecological	applications	is	growing	as	
the	utility	of	 these	data	has	 increasingly	been	recognized.	HSI	
can	be	collected	either	with	airborne	sensors	that	have	a	limited	
spatial	coverage	but	high-spatial	resolution	or	with	spaceborne	
sensors	 capable	 of	 capturing	 data	 globally,	 but	 generally	 with	
coarser	 spatial	 resolution.	 There	 are	 an	 expanding	 number	 of	
government,	private,	and	commercial	airborne	HSI	sensors.	In	
addition,	one	spaceborne	HSI	sensor—Earth	Observing-1	(EO-
1)	 Hyperion—has	 been	 in	 operation	 as	 a	 technology	 demon-
stration	since	November	2000.	Other	orbital	sensors	are	in	the	
planning	or	development	 stages	 in	hopes	of	 further	extending	
the	 spatial	 coverage	 of	 available	 imaging	 spectroscopy	 (Table	
16.1).

Airborne	 HSI	 sensors	 have	 been	 operating	 since	 the	 1980s.	
An	 early	 system	 was	 NASA’s	 airborne	 imaging	 spectrometer	
(AIS),	 followed	 later	 by	 the	 airborne	 visible/infrared	 imaging	
spectrometer	(AVIRIS),	which	is	still	in	operation	and	provides	
data	 to	 NASA-supported	 investigators.	 Newer	 instruments	
including	 the	 Carnegie	 Airborne	 Observatory	 (CAO)	 visible-
to-shortwave-infrared	(VSWIR)	imaging	spectrometer	provide	
increased	 spectral	 resolution	 and	 performance	 (e.g.,	 signal-to-
noise	 ratio	 [SNR])	 over	 previous	 technology	 (Table	 16.1).	 The	
U.S.	 National	 Science	 Foundation’s	 (NSF)	 National	 Ecological	
Observatory	 Network	 (NEON)	has	 created	 three	 copies	of	 the	
CAO	VSWIR,	which	will	provide	annual	collection	of	HSI	data	
for	each	of	its	core	research	sites	across	the	United	States.

Beyond	 government	 and	 privately	 funded	 instruments	 for	
research,	 a	 number	 of	 HSI	 sensors	 have	 been	 built	 for	 com-
mercial	 applications.	 For	 example,	 the	 Compact	 Airborne	
Spectrographic	Imager	(CASI,	CASI-2,	CASI-1500)	and	HyMap	
provide	 high-performance	 visible-to-near-infrared	 (VNIR)	
(365–1052  nm)	 and	 VSWIR	 (440–2500  nm)	 measurements,	
respectively	(Table	16.1).

Table 16.1 Examples	of	Current	and	Planned	Airborne	and	Spaceborne	HSI

Sensor	
Spectral	

Range	(nm)	
Spectral	
Bands	

Spectral	
Resolution	(nm)	

Spatial	
Resolution	(m)	 Reference	

Airborne
AVIRIS 400–2450 224 10 2.0+ Green	et al.	(1998)
AVIS-2 400–900 64 9 2.0+ Oppelt	and	Mauser	(2007)
CAO	VSWIR 380–2510 428 5 0.5+ Asner	et al.	(2012)
HYDICE 400–2500 206 8–15 1.0+ Basedow	et al.	(1995)
NEON	VSWIR 380–2500 212 10 0.5+ www.neoninc.org
AISA 380–2500 275 3.5–12 1+ www.specim.fi
CASI 365–1052 288 2–10 0.25+ www.itres.com
HyMap 440–2500 100–200 10–20 2.0+ Cocks	et al.	(1998)

Spaceborne
EO-1	Hyperion 400–2500 220 10 30 Folkman	et al.	(2001)
Proba-1	CHRIS 415–1050 18–62 1.3–12 18,	36 Barnsley	et al.	(2004)
EnMAP	(planned) 420–2450 98–130 6.5–10 30 Stuffler	et al.	(2007)
HyspIRI	(planned) 380–2500 210 10 60 hyspiri.jpl.nasa.gov
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In	 comparison	 to	 airborne	 systems,	 there	 are	 fewer	 space-
borne	sensors	collecting	hyperspectral	data	(Table	16.1).	NASA’s	
EO-1	 Hyperion	 has	 far	 exceeded	 its	 intended	 1-year	 life	 span,	
performing	for	over	a	decade	(Riebeek	2010).	Thenkabail	et al.	
(2004)	showed	that	Hyperion	data,	when	compared	to	data	from	
even	the	most	advanced	broadband	sensors	(Enhanced	Thematic	
Mapper	 Plus	 [ETM+],	 IKONOS,	 and	 Advanced	 Land	 Imager	
[ALI])	in	orbit	at	that	time,	yielded	models	that	explained	36%–
83%	more	of	the	variability	in	rainforest	biomass	and	produced	
land	use/land	cover	classifications	with	45%–52%	higher	accura-
cies.	The	European	Space	Agency	 (ESA)	also	has	a	hyperspec-
tral	 sensor	 (Compact	 High-Resolution	 Imaging	 Spectrometer	
[CHRIS])	on	board	the	Proba-1	satellite,	which	observes	in	the	
visible	and	near-infrared	(NIR)	portion	of	the	spectrum,	though	
at	 higher	 spatial	 resolutions	 than	 Hyperion	 it	 is	 only	 able	 to	
record	in	18	bands	in	this	range	(Barnsley	et al.	2004).	In	addi-
tion,	 Germany	 is	 planning	 the	 launch	 of	 a	 hyperspectral	 sen-
sor	 Environmental	 Mapping	 and	 Analysis	 Program	 (EnMAP)	
in	2017,	and	NASA	is	planning	a	mission	called	Hyperspectral	
and	Infrared	Imager	(HyspIRI)	for	sometime	near	the	year	2020.	
The	addition	of	these	spaceborne	sensors	will	greatly	contribute	
to	 the	 spatial	 and	 temporal	 coverage	of	hyperspectral	data	 for	
forest	research.

16.2.2  LiDAR Data Sources

LiDAR	data	sources	are	both	numerous	and	variable,	a	reflection	
of	 the	demand	 for	airborne	LiDAR	 in	a	wide	variety	of	 scien-
tific	and	engineering	applications.	Recent	and	upcoming	space-
borne	LiDAR	systems,	described	in	this	section,	offer	new	data	
for	 forest	monitoring.	While	 the	amount	of	LiDAR	data	being	
collected	is	increasing,	there	is	a	great	deal	of	variability	in	the	
quality,	type	(discrete	return	vs.	waveform),	and	spatial	resolu-
tion	of	the	resulting	data.

LiDAR	 datasets	 for	 the	 United	 States	 are	 publicly	 available	
from	 a	 variety	 of	 sources.	 The	 National	 Center	 for	 Airborne	
Laser	 Mapping	 (NCALM;	 www.ncalm.cive.uh.edu)	 uses	 com-
mercially	 sourced	 LiDAR	 sensors	 to	 collect	 high-resolution	
data	 (>2	 laser	 spots	 m−2)	 for	 NSF-funded	 projects	 or	 for	 other	
select	 projects.	 These	 data	 are	 currently	 made	 available	 to	 the	
public	within	2 years	of	collection	through	the	NSF-supported	
OpenTopography	 program	 (www.opentopography.org),	 which	
provides	 a	 platform	 to	 access	 these	 data,	 along	 with	 other	
LiDAR	 datasets	 contributed	 by	 researchers.	 NASA’s	 Land,	
Vegetation,	and	Ice	Sensor	(LVIS),	which	has	been	operating	in	
North	America	since	the	late	1990s,	provides	waveform	data	at	
coarser	resolution	of	10–25	m	diameter	laser	spots	in	support	of	
NASA	studies	(Blair	et al.	1999).	In	addition,	due	to	the	increas-
ing	 availability	 of	 commercial	 LiDAR	 acquisition	 services,	
many	state	and	local	governments	have	commissioned	datasets.	
In	 the	 United	 States,	 the	 National	 Oceanic	 and	 Atmospheric	
Administration	 provides	 an	 inventory	 of	 these	 data	 (http://
www.csc.noaa.gov/inventory/).	There	are	no	standard	character-
istics	of	these	datasets,	as	they	all	vary	with	sensor	parameters,	
elevation	of	data	collection,	and	the	density	of	returns	collected.	

These	heterogeneous	data	collection	conditions	hinder	general	
assessments	of	the	quality	of	these	data.

In	addition	to	airborne	LiDAR	data,	NASA’s	Geoscience	Laser	
Altimeter	System	(GLAS)	Instrument,	on	board	the	Ice,	Cloud,	
and	 land	 Elevation	 Satellite	 (ICESat),	 was	 the	 first	 spaceborne	
LiDAR	instrument	(Abshire	et al.	2005).	GLAS	collected	wave-
form	 data	 with	 70	 m	 spot	 diameter	 and	 170	 m	 spot	 intervals.	
The	 GLAS	 instrument	 was	 in	 operation	 from	 2003	 to	 2009,	
and	 the	data	are	publically	 available	 (icesat.gsfc.nasa.gov).	The	
ICESat-2	is	expected	to	launch	in	2016,	carrying	the	Advanced	
Topographic	Laser	Altimeter	System	(ATLAS).

16.2.3  Data Quality

The	 vast	 majority	 of	 HSI	 and	 LiDAR	 instruments	 have	 been	
deployed	on	aircraft,	so	the	geographic	coverage,	ground	sam-
pling	 distance	 (spatial	 resolution	 and/or	 laser	 spot	 spacing),	
flying	altitudes,	and	atmospheric	conditions	have	varied	enor-
mously,	 making	 comparisons	 of	 instrument	 performances	
difficult	 to	 achieve.	 Nonetheless,	 comparative	 use	 of	 these	
instruments	often	reveals	that	sensor	performance	is	paramount	
to	achieving	quality	estimates	of	vegetation	biophysical	and	bio-
chemical	properties.

Three	 sensor	 qualities	 have	 proven	 particularly	 important	
in	the	effort	to	achieve	high-fidelity	data	output.	These	include	
detector	uniformity,	instrument	stability,	and	SNR	performance	
of	 the	 measurement	 (Green	 1998).	 From	 the	 HSI	 perspective,	
each	of	these	metrics	of	quality	is	important.	Uniformity	refers	
to	 the	detailed	way	 in	which	spectra	are	collected	 in	 the	cross	
track	and	spectral	directions	on	the	instrument	detector.	Many	
HSI	instruments	fail	to	meet	the	often-cited	95%–98%	absolute	
uniformity	 standard.	One	of	 the	most	 insidious	errors	 in	uni-
formity	 occurs	 in	 the	 spectral	 direction.	 Most	 area-array	 HSI	
sensors	 fail	 to	 keep	 the	 spectral	 measurement	 aligned	 “down	
spectrum”	from	the	VNIR	(e.g.,	400–1100 nm)	and	throughout	
the	 shortwave	 infrared	 (SWIR)	 (e.g.,	 1100–2500  nm),	 leading	
to	a	mismatch	in	different	parts	of	the	spectrum	projected	onto	
the	Earth’s	surface.	Another	HSI	performance	issue	is	stability,	
which	refers	to	the	repeatability	of	the	measurement	across	the	
imaging	detector	and/or	over	time.	Much	of	 the	stability	 issue	
rests	 in	 the	 performance	 of	 the	 electronics	 and	 temperature	
stabilization	 subsystems.	Finally,	SNR	 is	a	quality	 that	 reports	
the	strength	and	accuracy	of	the	measurement	signal	relative	to	
noise	generated	by	the	electronics	and	optics.	SNR	varies	widely	
from	 instrument	 to	 instrument	 and	 also	 with	 environmental	
conditions	such	as	temperature	and	humidity.	Readers	should	be	
cautious	when	reviewing	potential	sources	of	HSI	data,	as	pro-
viders	may	report	SNR	on	either	a	bright	target	(e.g.,	white	refer-
ence)	or	with	enlarged	camera	apertures	and/or	inappropriately	
long	 integration	 times	 (equivalent	 to	 shutter	 speed).	 This	 will	
greatly	inflate	reported	SNR	values.	For	vegetation	applications,	
SNR	 performances	 should	 be	 reported	 on	 dark	 targets	 in	 the	
5%–8%	reflectance	range,	typical	for	plants	in	the	visible	spec-
trum	(350–700 nm),	and	with	integration	times	that	are	appro-
priate	for	airborne	or	spaceborne	ground	speeds	(usually	10	ms).
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LiDAR	 measurements	 also	 have	 SNR,	 uniformity,	 and	 sta-
bility	 challenges.	 The	 shape,	 noisiness,	 and	 strength	 of	 the	
outbound	 laser	 pulses	 largely	 affect	 LiDAR	 SNR.	 Commercial	
LiDARs	come	in	a	wide	range	of	SNR	performance	 levels.	For	
forest	 science,	 strong	 pulse	 strength	 (e.g.,	 high-wattage	 laser	
diodes)	 is	 necessary	 to	 overcome	 absorption	 by	 the	 vegetation	
canopy.	In	addition,	uniformity	tends	to	be	overlooked	by	scien-
tists	prior	to	data	source	selection;	it	is	highly	advisable	to	select	
LiDAR	instruments	that	deliver	a	uniform	scan	pattern	across	
the	 swath	of	 the	data	 set.	Without	 strict	 control	 over	 this	 fac-
tor,	the	user	will	end	up	with	high	data	density	in	the	middle	of	
the	scan	and	low-data	density	at	the	edges	of	the	scan.	Finally,	
stability	is	a	key	issue	with	LiDAR	instrumentation.	Many	com-
mercial	LiDARs	exhibit	instability	as	they	change	temperature,	
pressure,	 and	 humidity,	 resulting	 in	 variability	 in	 the	 quality	
of	 the	 laser	data	 throughout	 the	course	of	a	mapping	flight	or	
research	campaign.

16.3  HSI Remote Sensing of Forests

Forests,	 as	 fundamental	 components	 of	 the	 Earth’s	 biosphere,	
have	been	a	major	focus	of	study	from	the	beginning	of	HSI	data	
collection.	HSI	provides	a	quantitative	measure	of	the	sunlight	
reflected	from	the	forest	canopy	and	the	properties	therein.	The	
extended	range	and	high-fidelity	narrowband	resolution	of	HSI	

offers	enhanced	capability	for	mapping	forest	biochemical	and	
biophysical	constituents	along	with	physiological	processes	that	
contribute	to	the	shape	of	the	reflectance	spectrum	(Table	16.2).	
HSI	data	are	used	 in	a	number	of	ways	to	assess	 leaf	and	can-
opy	 properties,	 namely,	 semiempirical	 methods	 utilizing	 nar-
rowband	 spectral	 indices,	 regression	 modeling,	 and	 radiative	
transfer	model	inversion.	As	the	HSI	data	quality	improves,	so	
do	the	results	derived	from	these	methods.	Most	recently,	HSI	
combined	with	 improved	analytical	methods	has	dramatically	
advanced	species	mapping	and	land	cover	classification.

16.3.1  Biophysical Properties

HSI	 data	 can	 uncover	 biophysical	 properties	 of	 ecological	 sig-
nificance	at	both	the	leaf	and	canopy	scales.	Properties	related	
to	forest	composition	and	leaf	area	index	(LAI)	are	perhaps	best	
retrieved	from	HSI	data,	whereas	some	properties	like	canopy-
gap	 distribution	 and	 leaf	 angle	 distribution	 (LAD)	 are	 more	
readily	determined	from	LiDAR.	LAI	(leaf	area	per	unit	ground	
area,	m2	m−2)	 is	one	of	 the	most	 important	canopy	properties	
because	it	is	directly	related	to	productivity	and	water	use,	but	
variation	in	LAI	can	also	indicate	stress	resistance	and	competi-
tion	for	light	(see	Waring	1983;	Asner	et al.	2004a).	Field	data	and	
models	show	that	LAI	and	LAD	are	primary	controls	on	canopy	
reflectance	 in	dense	vegetation	(Gong	et al.	1992;	Asner	1998).	

Table 16.2 Forest	Biochemical	and	Physiological	Properties	Estimated	from	HSI,	along	with	a	Summary	of	Example	Methods	(Spectral	
Indices),	Relevant	Spectral	Bands,	Maturity,	and	References

Vegetation	
Property	 Estimation	Method(s)	 Relevant	Bands	(nm)	 Maturity	Level	 Example	References	

Foliar	
nitrogen

Normalized	difference	nitrogen	
index;	band	depth	analysis;	PLSR;	
RT	model	inversion

1510,	1680;	
400–2500

✓✓ Kokaly		(2001),	Serrano	et al.	(2002),	Smith	et al.	(2003),	
Asner	and	Vitousek	(2005),	and	Dahlin	et al.	(2013)

LUE PRI 531,	570 ✓✓ Gamon	et al.	(1992,	1997),	Gamon	and	Surfus	(1999),	
Stylinksi	et al.	(2000),	Guo	and	Trotter	(2004),	Hilker	
et al.	(2008),	Filella	et al.	(2009),	Garbulsky	et al.	
(2011),	and	Ripullone	et al.	(2011)

Foliar	
carotenoids

Various	narrowband	spectral	
indices

510,	550,	700;	445,	
680,	800

✓✓ Gitelson	et al.	(2002)	and	Peñuelas	et al.	(1995)

Foliar	
anthocyanin

Various	narrowband	spectral	
indices

400–700 ✓ Gamon	and	Surfus	(1999),	Gitelson	et al.	(2001,	2006),	
and	Van	den	Berg	and	Perkins	(2005)

APAR Simple	ratio,	NDVI 400–700 ✓✓✓ Jordan		(1969)	and	Rouse	et al.	(1974)
LAI Various	narrowband	spectral	

indices;	RT	model	inversion
700–1300 ✓✓✓ Rouse	et al.	(1974),	Huete	(1988),	Gao	et al.	(1995),	

Rondeaux	et al.	(1996),	Haboudane	et al.	(2002),	
Gitelson	(2004),	and	Lim	et al.	(2004)

LMA PLSR 400–2500 ✓ Asner	et al.	(2011)
Foliar	

chlorophylls
Various	narrowband	spectral	

indices;	RT	model	inversion
550,	670,	700;	

800–1300;	690–725
✓✓✓ Kim		(1994),	Daughtry	et al.	(2000),	Zarco-Tejada	et al.	

(2001),	Gitelson	et al.	(2006),	and	Zhang	et al.	(2008)
Foliar	water Various	narrowband	spectral	

indices
820,	1600;	860,	1240;	

900,	970
✓✓ Hunt	and	Rock	(1989),	Peñuelas	et al.	(1997),	and	

Dahlin	et al.	(2013)
Canopy	water EWT;	RT	model	inversion 800–2500 ✓✓✓ Hunt	and	Rock	(1989),	Gao	and	Goetz	(1990),	Gao		

(1996),	Peñuelas	et al.	(1997),	and	Roberts	et al.	(2004)
Foliar	lignin	

and	cellulose
Cellulose	absorption	index;	

normalized	difference	lignin	index
2015,	2106,	2195;	

1680,	1754
✓✓ Daughtry		(2001)	and	Serrano	et al.	(2002)

Foliar	carbon PLSR 1500–2500 ✓ Dahlin	et al.	(2013)

Note:	 Maturity	is	a	metric	of	relative	accuracy	as	depicted	in	the	literature,	with	one	checkmark	indicating	low	maturity	and	three	checkmarks	indicating	high	
maturity.	RT,	radiative	transfer;	PLSR,	partial	least	squares	regression.
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While	LAI	is	detectable	from	broadband	sensors,	studies	show	
that	HSI	data	and	analysis	methods	optimized	for	HSI	are	more	
accurate	(e.g.,	Spanner	et al.	1994;	Gong	et al.	1995).	Lee	et al.	
(2004)	 examined	 four	 structurally	 different	 land	 cover	 types	
and	showed	 that	HSI	 red-edge	and	SWIR	bands	produced	 the	
best	estimates	of	LAI.	Equivalent	water	 thickness	 (EWT,	mm)	
produces	better	estimates	of	LAI	 than	do	pigment-based	 indi-
ces	such	as	the	normalized	difference	vegetation	index	(NDVI)	
(Roberts	et al.	1998),	with	LAI	values	(up	to	nine)	that	far	exceed	
the	sensitivity	range	of	NDVI	and	other	indices	(Roberts	et al.	
2004).	Water	 indices	derived	 from	HSI	have	also	been	used	 to	
quantify	loss	of	LAI	from	pest-related	defoliation	and	other	fac-
tors	(e.g.,	White	et al.	2007).

At	the	leaf	level,	leaf	mass	per	area	(LMA,	g	m−2	and	its	recipro-
cal;	specific	leaf	area	[SLA],	m2	g−1)	is	a	key	foliar	property	that	is	
highly	correlated	with	light	harvesting	and	potential	plant	produc-
tivity	(Niinemets	1999;	Westoby	et al.	2002).	LMA	can	be	defined	
for	foliage	throughout	the	canopy	or	in	any	given	canopy	layer,	
depending	upon	the	ecological	question.	While	there	is	enormous	
range	in	LMA	within	a	given	plant	functional	type	and	among	
coexisting	species,	LMA	is	broadly	correlated	with	temperature	
and	precipitation	at	the	global	level	(Wright	et al.	2004).	Higher	
temperatures,	drier	conditions,	and	higher	irradiance	are	associ-
ated	with	higher	values	of	LMA.	Leaves	with	higher	LMA	are	built	
for	 defense	 and	 longer	 life	 spans,	 creating	 higher	 resource	 use	
efficiency	per	nutrient	acquired	(Poorter	et al.	2009).	Conversely,	
lower	LMA	values	are	found	in	fast-growing	species,	often	with	
higher	nutrient	concentrations	and	photosynthetic	rates	(Wright	
et  al.	 2004).	 In	 addition,	 there	 is	 a	 strong	 degree	 of	 taxonomic	
organization	 to	 LMA	 within	 forest	 communities	 (Asner	 et  al.	
2014).	 Because	 LMA	 is	 a	 function	 of	 leaf	 thickness	 and	 is	 cor-
related	with	total	carbon	and	nitrogen,	 it	 is	uniquely	detectable	
in	HSI	data	and	has	been	estimated	from	inversion	of	radiative	
transfer	models	such	as	the	PROSPECT	model	(Jacquemoud	et al.	
2009),	chemometric	analytical	methods	(Asner	et al.	2011),	and	
HSI-optimized	SWIR	 indices	 (le	Maire	et al.	2008).	The	results	
from	these	studies	conform	to	field	measurements.

16.3.2  Biochemical Properties

The	foremost	motivation	for	biochemical	detection	is	 to	better	
assess	the	spatiotemporal	status	and	trends	of	forest	canopy	func-
tioning,	especially	those	related	to	fluxes	of	water,	carbon,	and	
nutrients.	The	list	of	plant	biochemicals	that	have	been	identified	
and	quantified	using	HSI	data	is	extensive	(Table	16.2)	and	has	
received	several	detailed	reviews	(Blackburn	2007;	Kokaly	et al.	
2009;	Ustin	et al.	2009;	Homolová	et al.	2013).	Many	studies	have	
found	strong	correlations	between	remotely	sensed	foliar	nitro-
gen	content	and	photosynthetic	capacity	or	net	primary	produc-
tion	(Kokaly	et al.	2009;	Townsend	et al.	2013),	despite	the	small	
fraction	 of	biomass	 comprised	 nitrogen.	Most	of	 these	 studies	
have	been	based	on	partial	least	squares	regression	(PLSR)	anal-
ysis	(Ollinger	et al.	2002;	Smith	et al.	2002;	Martin	et al.	2008)	of	
the	full	spectrum	or	spectral	matching	and	continuum	removal	
techniques	(Kokaly	2001).	Feilhauer	et al.	(2011)	and	Homolová	

et al.	(2013)	show	that	multiple	wavelengths	throughout	the	400–
2500 nm	range	have	enabled	nitrogen	detection,	indicating	that	
nitrogen-related	 spectral	 features	 may	 vary	 by	 site,	 species,	 or	
phenological	state.

Vegetation	indices	(Zarco-Tejada	et al.	1999,	2001),	semiem-
pirical	 indices	 (e.g.,	 Gitelson	 et  al.	 2003,	 2006),	 and	 radiative	
transfer	models	(Zarco-Tejada	et al.	2001,	2004;	Féret	et al.	2008,	
2011)	have	been	used	to	characterize	growth-related	foliar	chem-
icals	(e.g.,	nitrogen	and	chlorophyll	pigments),	yet	other	studies	
demonstrate	that	remote	sensing	of	canopy	structure	also	aids	
quantitative	 retrieval	 of	 biochemical	 properties	 (e.g.,	 Zhang	
et al.	2008;	Hernández-Clemente	et al.	2012;	Knyazikhin	et al.	
2013a,b,c;	Ollinger	et al.	2013;	Townsend	et al.	2013)	(Figure 16.1).	
Asner	 and	 Warner	 (2003)	 conclude	 that	 quantitative	 informa-
tion	on	gap	fraction	and	tree	structure	is	needed	to	validate	or	
constrain	remote	sensing	models	 to	accurately	estimate	chem-
istry	and	energy	exchange.	Possible	ways	 to	account	 for	struc-
ture	in	the	retrieval	of	foliar	chemistry	include	canopy	radiative	
transfer	 models,	 LiDAR,	 and	 other	 methods	 that	 account	 for	
intra-	 and	 intercanopy	 gaps,	 self-shading,	 and	 stand	 structure	
(see	Section	16.5.1).	Many	proposed	methods	remain	untested,	
including	 the	 directional	 area	 scattering	 factor	 (DASF),	 which	
is	a	 function	based	on	 three	wavelength	 invariant	parameters:	
canopy	interceptance,	probability	of	recollision,	and	directional	
gap	 density	 (Lewis	 and	 Disney	 2007;	 Schull	 et  al.	 2007,	 2011;	
Knyazikhin	et al.	2013a).	Still	other	researchers	have	argued	that	
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Figure 16.1 (a)	 LAI	 image	 of	 a	 black	 spruce	 forest	 (53.2%	 coni-
fer,	16.1%	deciduous	species,	and	21.1%	grass)	near	Sudbury,	Ontario,	
Canada.	 The	 image	 is	 derived	 based	 on	 a	 relationship	 between	 the	
simple	 ratio	 (near	 infrared/R)	 and	 LAI	 (r2	=	 0.88).	 (b).	 Chlorophyll	 a	
+	 b	 content	 distribution	 per	 unit	 ground	 area.	 The	 image	 combines	
the	 retrieved	 leaf	 chlorophyll	 a	 +	 b	 content	 for	 the	 three	 cover	 types	
(r2 =	0.47)	times	the	LAI.	The	chlorophyll	data	were	analyzed	using	the	
4-Scale	geometrical–optical	model	 to	characterize	 the	effect	of	struc-
ture	on	above	canopy	reflectance	and	inversion	of	the	PROSPECT	leaf	
model	to	estimate	pigment	concentration.	Data	from	72-band	Compact	
Airborne	Spectrographic	Imager	(HSI)	averaged	from	2	m	pixel	resolu-
tion	to	20	m.	(Reprinted	from	Zhang,	Y.	et al.,	Remote Sens. Environ.,	
112,	3234,	2008.)
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the	canopy	architecture	of	a	species	is	an	integrated	component	
of	its	strategy	for	resource	capture	and	therefore	should	covary	
with	chemistry	(Ollinger	et al.	2013;	Townsend	et al.	2013).

Foliar	and	canopy	water	content	has	also	 received	a	 signifi-
cant	amount	of	attention	due	to	its	relationship	with	transpira-
tion	and	plant	water	stress	(Ustin	et al.	2012;	Hunt	et al.	2013).	
The	water	absorption	signal	has	a	large	effect	on	plant	spectra,	
from	small	absorptions	in	the	NIR	at	970	and	1240 nm,	acces-
sible	 through	HSI	data,	 to	a	 large	broad	absorption	across	 the	
entire	SWIR	(1300–2500 nm).	Gao	and	Goetz	(1995)	developed	
one	 of	 the	 first	 narrowband	 indices	 for	 the	 quantification	 of	
EWT	of	vegetation.	The	values	derived	for	EWT	from	AVIRIS	
data	 were	 tested	 against	 field	 data	 from	 the	 Harvard	 Forest,	
Massachusetts.	HSI	also	offers	the	unique	ability	to	differentiate	
between	different	phases	of	water	(atmospheric	water	vapor	and	
the	 moisture	 content	 of	 vegetation),	 for	 which	 the	 absorption	
maxima	 are	 offset	 by	 about	 40–50  nm	 (Gao	 and	 Geotz	 1990).	
This	 ability	 to	 quantify	 atmospheric	 water	 aids	 in	 the	 statisti-
cal	 modeling	 of	 the	 atmosphere	 such	 that	 water	 vapor	 signals	
can	be	removed,	permitting	proper	estimation	of	the	underlying	
liquid	 water	 stored	 in	 vegetation	 (Green	 et  al.	 1989).	 Recently,	
Cheng	et al.	(2013b)	showed	that	it	is	possible	to	monitor	small	
diurnal	 changes	 in	 water	 content	 from	 optimized	 indices	 and	
wavelet	analysis	that	provide	information	on	plant	water	status	
and	whether	root	uptake	can	support	full	transpiration	demand.

Nonpigment	materials	in	the	forest	canopy	range	from	foliar	
carbon	constituents,	such	as	lignin	and	cellulose,	to	dead	leaves,	
stems,	 or	 remaining	 reproductive	 structures	 of	 flowers	 and	
fruits.	The	detection	and	quantification	of	these	materials,	some-
times	referred	to	as	dry	matter	or	nonphotosynthetic	vegetation	
(NPV),	is	often	used	as	an	indicator	of	canopy	stress	and	may	be	

important	for	quantifying	the	contribution	of	plant	litter	to	for-
est	carbon	pools.	Particularly	after	foliage	has	lost	pigments	and	
water,	the	cellulose–lignin	absorptions	become	easily	detectable	
with	 HSI	 data	 through	 narrowband	 methods	 such	 as	 the	 cel-
lulose	absorption	index	(Daughtry	2001;	Daughtry	et al.	2005),	
spectral	mixture	analysis	(Asner	and	Lobell	2000;	Roberts	et al.	
2003a),	chemometric	approaches	 like	PLSR	(Asner	et al.	2011),	
or	 radiative	 transfer	 models	 (Riaño	 et  al.	 2004;	 Jacquemoud	
et al.	2009).	Kokaly	et al.	(2007,	2009)	used	continuum	removal	
combined	with	a	spectral	library	to	reveal	a	2–3 nm	shift	in	the	
cellulose–lignin	 absorption	 feature	 when	 the	 concentration	 of	
lignin	 increases,	demonstrating	 the	utility	of	HSI	 in	quantify-
ing	subtle	variations	in	canopy	carbon.	Numerous	examples	of	
forest	NPV	quantification	also	exist	 in	 the	HSI	 literature	 (e.g.,	
Ustin	and	Trabucco	2000;	Roberts	et al.	2004;	Guerschman	et al.	
2009).	 Dry	 matter	 signatures	 in	 the	 HSI	 spectrum	 have	 been	
used	to	assess	whether	canopies	were	subjected	to	insect	defolia-
tion,	drought	stress	(White	et al.	2007;	Fassnacht	et al.	2014),	or	
root	pathogen	damage	(Santos	et al.	2010).

HSI	 data	 have	 significant	 potential	 for	 mapping	 forest	
composition	 at	 species	 and	 community	 levels,	 based	 largely	
on	their	biochemical	attributes	(Figure	16.2).	Many	examples	
have	been	published	using	various	analytical	approaches	with	
airborne	HSI	images	(e.g.,	Martin	et al.	1998;	Clark	et al.	2005;	
Bunting	and	Lucas	2006;	Bunting	et al.	2010),	EO-1	Hyperion	
satellite	 data	 (Townsend	 and	 Foster	 2002),	 time	 series	 of	
Hyperion	 data	 (Kalacska	 et  al.	 2007;	 Somers	 and	 Asner	
2013),	and	combinations	of	airborne	HSI	imagers	and	LiDAR	
(Dalponte	 et  al.	 2007;	 Jones	 et  al.	 2010;	 Colgan	 et  al.	 2012a;	
Naidoo	 et  al.	 2012;	 Baldeck	 et  al.	 2014).	 In	 recent	 years,	 the	
ability	to	map	species	and	detailed	land	cover	has	significantly	
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Figure 16.2 (a)	A	false	color	composite	image	of	Nanawale	Forest	Reserve,	Hawaii	Island	(R =	646 nm;	G =	560.7 nm;	B =	447 nm),	with	colored	
polygons	showing	locations	of	species	data	from	a	field	survey.	(b)	Classification	of	17	canopy	species	based	on	regularized	discriminant	analysis	
(n =	50	samples/species)	using	CAO	VNIR	imaging	spectrometer	data.	(Reprinted	from	Féret,	J.-B.	and	Asner,	G.P.,	Remote Sens. Environ.,	115,	
2415,	2013).
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improved	(Asner	2013).	It	 is	 likely	that	this	 is	a	consequence	
of	 improved	 instrument	 performance,	 especially	 for	 high-
fidelity	HSI	data	and	for	the	adoption	of	a	wide	variety	of	new	
analytical	methods	 including	 radiative	 transfer	models,	 seg-
mentation	 and	 object	 delineation,	 and	 numerous	 statistical	
methods	 such	 as	 ensemble	 classifiers,	 discriminate	 analysis,	
support	vector	machines,	and	combined	approaches.	No	one	
method	has	yet	been	shown	to	work	universally	across	global	
land	cover	types	with	complex	environment	and	terrain	inter-
actions.	However,	several	general	conclusions	can	be	inferred	
from	these	and	other	studies:	(1)	the	addition	of	SWIR	bands	
along	with	VNIR	bands	often	significantly	increases	the	accu-
racy	of	mapping	forest	species;	(2)	species	mapping	is	further	
enhanced	if	HSI	data	encompass	multidate	periods	that	cap-
ture	 phenological	 patterns,	 as	 is	 consistent	 with	 improve-
ments	reported	for	multidate	multispectral	data	(e.g.,	Wolter	
et al.	2008);	and	(3)	combining	information	on	tree	structure	
from	 LiDAR,	 such	 as	 canopy	 height,	 diameter,	 and	 volume,	
with	HSI	data	improves	results	(Féret	and	Asner	2013).

16.3.3  Canopy Physiology

Imaging	 spectroscopy	 can	 be	 used	 to	 characterize	 three	 key	
physiological	 processes	 responsible	 for	 carbon	 uptake	 in	 for-
ests:	 photochemistry,	 nonphotochemical	 quenching	 (NPQ),	
and	fluorescence.	Solar	radiation,	and	photosynthetically	active	
radiation	(PAR;	400–700 nm)	in	particular,	supplies	the	energy	
that	 drives	 carbon	 uptake	 in	 forests.	 The	 first	 process,	 photo-
chemistry,	 refers	 directly	 to	 the	 process	 by	 which	 the	 enzyme	
ribulose-1,5	 bisphosphate	 carboxylase–oxygenase (RuBisCO)	
catalyzes	RuBP	to	fix	carbon	from	carbon	dioxide.	Within	the	
Calvin	cycle	of	C3	plants	 (which	 includes	 trees),	photochemis-
try	 is	 driven	 by	 the	 energy	 supplied	 from	 light	 harvesting	 by	
pigment	 complexes.	 The	 second	 process,	 NPQ,	 relates	 directly	
to	 plant	 interactions	 with	 light.	 Plants	 downregulate	 photo-
synthesis	through	a	range	of	processes	related	to	pigment	con-
centrations	 to	 either	 make	 use	 of	 light	 energy	 or	 dissipate	 it	
(Demmig-Adams	and	Adams	2006).	Photochemistry	and	NPQ	
processes	can	be	characterized	 through	estimation	of	pigment	
concentrations	 or	 through	 inference	 based	 on	 changes	 in	 leaf	
pigment	 pools	 associated	 with	 plant	 responses	 to	 excess	 light	
or	stresses	that	prevent	them	from	fully	utilizing	ambient	light	
energy	 (Demmig-Adams	 and	 Adams	 1996).	 Finally,	 all	 plants	
dissipate	light	energy	through	solar-induced	fluorescence	(SIF),	
which	only	occurs	as	a	consequence	of	photosynthesis	and	has	
been	 found	to	scale	directly	 to	rates	of	photosynthetic	activity	
(Baker	2008).

Quantifying	 foliar	 nitrogen,	 the	 key	 element	 in	 RuBisCO	
and	 a	 trait	 whose	 concentration	 within	 proteins	 in	 foliage	
scales	directly	with	photosynthetic	capacity	(Field	and	Mooney	
1986;	 Evans	 1989;	 Reich	 et  al.	 1997),	 provides	 a	 measure	 of	
the	 functioning	 of	 forest	 canopies	 (as	 described	 earlier).	 This	
functioning	includes	the	capacity	for	carbon	uptake,	but	photo-
synthetic	downregulation	limits	carbon	uptake	under	adverse	
environmental	 conditions.	 The	 most	 widely	 used	 models	 of	

photosynthesis	 employ	 the	 Farquhar	 model	 (Farquhar	 et  al.	
1980;	Farquhar	and	von	Caemmerer	1982),	in	which	the	poten-
tial	photosynthetic	performance	of	a	leaf	is	characterized	using	
two	 parameters:	 the	 maximum	 rate	 of	 carboxylation	 (Vcmax)	
governed	 by	 RuBisCO	 activity	 and	 the	 maximum	 electron	
transport	rate	(ETR)	(Jmax	is	the	maximum	rate	of	ETR;	Farquar	
and	von	Caemmerer	1982).	Together,	these	limit	the	maximum	
rate	of	photosynthesis	(Amax).	Vcmax	is	strongly	related	to	N	con-
centration	and	LMA,	that	is,	the	investment	by	a	plant	in	light	
harvesting	relative	to	construction	and	maintenance	(Poorter	
et al.	2009).	ETR	and	Jmax	are	more	closely	related	to	the	pro-
cesses	 set	 in	 motion	 by	 light	 harvesting	 in	 PSI	 and	 PSII	 (PS	
=	 photosystem),	 necessary	 for	 the	 synthesis	 of	 adenosine	 tri-
phosphate	(ATP)	to	drive	cellular	reactions.	Because	the	Calvin	
cycle	depends	on	ATP	availability	to	sustain	the	regeneration	
of	RuBP	(which	in	turn	permits	carboxylation),	photosynthetic	
capacity	 is	 limited	 by	 Jmax.	 Therefore,	 the	 optical	 properties	
of	 foliage	 related	 to	 light	 harvesting	 may	 also	 facilitate	 map-
ping	Jmax	from	HSI.	It	should	be	noted	that	all	photosynthetic	
parameters	 of	 vegetation	 are	 sensitive	 to	 temperature	 and	
moisture,	so	any	remotely	sensed	estimate	of	such	parameters	
will	be	specific	to	the	ambient	conditions	at	 the	time	of	mea-
surement	(Serbin	et al.	2012).	HSI	has	also	been	used	as	part	of	
multisensor	 approaches	 to	 characterize	 net	 ecosystem	 photo-
synthesis	(e.g.,	Rahman	et al.	2001;	Asner	et al.	2004a;	Thomas	
et al.	2006,	2009).

Doughty	 et  al.	 (2011)	 successfully	 related	 leaf-level	 spec-
troscopic	measurements	to	Amax	but	had	less	success	with	the	
other	parameters.	Variations	in	Vcmax	and	Jmax	related	to	tem-
perature	were	measured	in	cultivated	aspen	and	cottonwood	
leaves	and	accurately	predicted	similar	relationships	in	plan-
tation	trees	(Serbin	et al.	2012).	The	ability	to	map	Vcmax	and	
Jmax	from	imaging	spectroscopy	is	most	likely	a	consequence	
of	 the	 ability	 to	 infer	 these	 properties	 from	 traits	 that	 are	
directly	detectable	based	on	known	or	hypothesized	absorp-
tion	features	(e.g.,	N,	LMA,	and	water;	see	Kattge	et al.	2009	
and	Cho	et al.	2010)	and	the	coordination	of	these	traits	with	
canopy	 structure	 (Ollinger	 et  al.	 2013).	 These	 studies	 show	
promise	 for	 developing	 remote	 sensing	 methods	 to	 map	 the	
properties	used	by	modelers	to	characterize	forest	physiologi-
cal	function.

Efforts	 to	 map	 parameters	 directly	 associated	 with	 photo-
chemistry	 are	 an	 area	 of	 continuing	 development	 in	 imaging	
spectroscopy.	 The	 discipline	 of	 physiological	 remote	 sensing	
using	HSI	has	its	roots	in	efforts	to	characterize	NPQ	and	how	
NPQ	 relates	 to	 photosynthetic	 rates	 and	 capacity.	 This	 work	
stems	 from	the	development	of	 the	Photochemical	Reflectance	
Index	(PRI)	(Gamon	et al.	1992;	Peñuelas	et al.	1995).	While	typi-
cally	associated	with	the	de-epoxidation	of	xanthophylls	for	pho-
tosynthetic	downregulation	during	NPQ	(Bilger	and	Björkman	
1990;	 Demmig-Adams	 and	 Adams	 1996),	 the	 PRI	 more	 gen-
erally	 correlates	 with	 total	 pigment	 pools	 and	 their	 variation	
with	environmental	context	(Gamon	and	Bond	2013).	As	such,	
the	 PRI	 has	 been	 shown	 to	 be	 an	 indicator	 of	 photosynthetic	
rates	and	 light	use	efficiency	 (LUE)	(Gamon	and	Surfus	1999).	
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Accounting  for  species	 composition,	 environmental	 variabil-
ity,	and	seasonal	responses,	the	PRI	is	often	correlated	with	the	
carotenoid	to	chlorophyll	ratio	(r2	=	0.50–0.80),	a	property	linked	
to	 photosynthesis	 and	 light	 harvesting	 (Garbulsky	 et  al.	 2011)	
(Figure	 16.3).	 In	 addition,	 Stylinksi	 et  al.	 (2000)	 also	 showed	
close	relationships	between	the	PRI	and	xanthophyll	cycle	pig-
ments	and	modeled	electron	transport	capacity	(Jmax)	in	leaves	of	
pubescent	oak	(Quercus pubescens).	Kefauver	et al.	(2013)	showed	

strong	 relationships	between	PRI	and	physiological	damage	 to	
forests	by	ozone.	A	limitation	of	the	PRI	has	been	its	species-level	
sensitivity,	that	is,	relationships	between	the	PRI	and	photosyn-
thesis	are	species	dependent	(Guo	and	Trotter	2004;	Filella	et al.	
2009;	Ripullone	et al.	2011).	However,	Hilker	et al.	(2008)	have	
shown	that	PRI	data	may	facilitate	retrieval	of	plant	photosyn-
thetic	efficiency	independent	of	species	composition.

The	 key	 physiological	 processes	 responsible	 for	 productiv-
ity	of	forests	can	also	be	addressed	by	remote	sensing	through	
the	 estimation	 of	 light	 absorption	 by	 canopies	 and	 its	 pre-
sumed	 linkage	 to	 light	 harvesting	 and	 use	 in	 photosynthesis.	
Under	 nonstressed	 conditions,	 net	 primary	 production	 is	 lin-
early	 related	 to	 the	 absorbed	 photosynthetically	 active	 radia-
tion	 (APAR;	 Montieth	 1977).	 This	 relationship	 is	 modulated	
by	 LUE.	 Traditionally,	 APAR	 has	 been	 successfully	 calculated	
from	vegetation	indices	derived	from	spectral	sensors	of	many	
varieties	 (e.g.,	 Field	 et  al.	 1995;	 Sellers	 et  al.	 1996).	 The	 detec-
tion	of	forest	LUE	using	PRI,	and	thus	potential	carbon	uptake,	
has	 been	 demonstrated	 in	 numerous	 systems	 including	 boreal	
(Nichol	et al.	2000)	and	conifer	 forests	(Middleton	et al.	2009;	
Atherton	et al.	2013),	but	the	utilization	of	remotely	estimated	
APAR	by	the	canopy	for	photosynthesis	remains	a	more	difficult	
task.	The	most	common	approach	to	assessing	LUE	using	HSI	
has	 been	 through	 narrowband	 indices	 such	 as	 the	 PRI,	 which	
uses	the	reflectance	at	570	and	531 nm	(i.e.,	Gamon	et al.	1997),	
but	future	developments	in	retrieving	the	Farquhar	parameters	
(Vcmax,	Jmax)	and	SIF	are	likely	to	provide	more	robust	estimates	
of	 key	 drivers	 of	 physiological	 processes.	 Ultimately,	 linkages	
across	methods,	for	example,	estimating	LUE	using	derivations	
biochemistry	(%N)	and	LAI,	may	provide	a	hybrid	approach	to	
best	map	factors	important	to	net	primary	productivity	(NPP)	
(Green	et al.	2003).

Chlorophyll	 fluorescence	 provides	 another	 means	 of	 esti-
mating	photosynthetic	performance	and	LUE	from	HSI	data	
(Meroni	et al.	2009).	Numerous	studies	since	the	early	2000s	
have	 demonstrated	 the	 capacity	 of	 measurements	 of	 SIF	 to	
accurately	 characterize	 seasonal	 patterns	 of	 carbon	 uptake	
(Guanter	et al.	2007;	Frankenburg	et al.	2011;	Joiner	et al.	2011).	
Under	 natural	 conditions,	 fluorescence	 and	 photosynthesis	
are	 positively	 correlated.	 Energy	 absorbed	 in	 the	 photosys-
tems	is	reradiated	at	longer	wavelengths	than	those	absorbed,	
adding	a	subtle	signal	to	reflected	solar	radiation,	most	nota-
bly	 with	 peaks	 around	 685	 and	 740  nm.	 Measurements	 of	
SIF	 require	 narrowband	 data	 at	 specific	 wavelengths	 in	 the	
NIR	in	which	the	vegetation	fluorescence	signal	 in	retrieved	
reflectance	(about	2%)	can	be	distinguished	from	NIR	albedo	
(>40%)	(Berry	et al.	2013).	Most	efforts	to	date	have	focused	on	
retrievals	of	SIF	in	narrow	wavebands	(preferably	<0.3 nm)	±	
20 nm	around	the	solar	Fraunhofer	lines	(wavelengths	where	
there	 is	 no	 incoming	 solar	 energy,	 ~739  nm)	 or	 O2-A	 band	
at	 760  nm.	 Generally	 correlated	 with	 the	 PRI	 (Zarco-Tejada	
et  al.	 2009;	 Cheng	 et  al.	 2013a),	 fluorescence	 has	 also	 been	
measured	at	field	sites	differing	in	soil	salinity	and	estimated	

(b)(a)

(c) (d)

0.1

–0.08(f )(e)
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Figure 16.3 Midsummer	PRI	images	derived	from	2009	AVIRIS	
of	 (a)	 oak/pine	 forests	 in	 Baraboo/Devil’s	 Lake,	 Wisconsin;	 (b)	
oak	 and	 tulip	 poplar	 forests	 in	 Fernow	 Experimental	 Forest,	 West	
Virginia;	 (c)	 northern	 hardwood	 and	 conifer	 forests	 in	 Flambeau	
River	 State	 Forest,	 Wisconsin;	 (d)	 xeric	 oak	 forests	 in	 Green	 Ridge	
State	Forest,	Maryland;	(e)	northern	hardwood	and	subboreal	coni-
fers	 in	 Ottawa	 National	 Forest,	 Michigan;	 and	 (f)	 hemlock,	 white	
pine,	 and	 deciduous	 hardwoods	 in	 the	 Porcupine	 Mountains,	
Michigan.	 Lower	 values	 indicate	 areas	 of	 greater	 vegetation	 stress.	
These	images	illustrate	significant	variability	in	forest	physiological	
status	across	landscapes.
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spatially	from	airborne	HSI	data	using	the	PRI	index	(531	and	
570  nm)	 (Naumann	 et  al.	 2008).	 Zarco-Tejada	 et  al.	 (2009)	
estimated	 fluorescence	 from	 infilling	 of	 the	 O2-A	 bands	 at	
757.5	 and	 760.5  nm	 measured	 in	 1  nm	 wavelength	 bands,	
which	minimized	confounding	effects	from	variance	in	chlo-
rophyll	 and	 LAI.	 More	 recently,	 Zarco-Tejada	 et  al.	 (2013)	
used	 narrowband	 spectral	 indices	 and	 fluorescence	 infilling	
at	750,	762,	and	780 nm,	revealing	that	seasonal	spectroscopic	
trends	 tracked	 changes	 in	 carbon	 fluxes.	 HSI	 observations	
continue	to	pave	additional	avenues	to	insight	on	plant	physi-
ological	processes.

16.4  LiDAR Remote Sensing of Forests

Whereas	HSI	provides	estimates	of	 the	chemical,	physiologi-
cal,	 and	 plant	 compositional	 properties	 of	 forests,	 LiDAR	
probes	the	structural	and	architectural	traits	of	vegetation	as	
well	as	the	terrain	below	the	canopy	(Table	16.3).	A	large	num-
ber	of	synthesis	papers	have	been	written	on	the	use	of	LiDAR	
for	 studies	 of	 ecosystem	 structure	 (e.g.,	 Dubayah	 and	 Drake	
2000;	Lefsky	et al.	2002;	Lim	et al.	2003;	Vierling	et al.	2008;	
Wulder	 et  al.	 2012),	 including	 in	other	 chapters	of	 this	book	
(e.g.,	Chapter	17).	Here,	we	only	briefly	highlight	 the	various	
uses	of	LiDAR	in	the	context	of	forest	structure,	architecture,	
and	biomass;	 the	reader	should	also	read	Chapter	17	 for	 fur-
ther	details.

16.4.1  Canopy Structure and Biomass

The	 height	 of	 a	 forest	 canopy	 is	 a	 fundamental	 characteristic	
that	 both	 discrete	 and	 waveform	 LiDAR	 sensors	 are	 capable	
of	describing	(Figure	16.4).	Even	discrete-return	datasets	 that	
contain	only	the	first	and	last	return	from	the	laser	pulse	will	
allow	for	the	calculation	of	this	parameter,	after	a	ground	ele-
vation	model	has	been	generated	from	LiDAR	data	(Lim	et al.	
2003).	 While	 canopy	 height	 alone	 does	 not	 provide	 extensive	
information	on	forest	structure,	it	is	a	parameter	related	to	tree	
diameters	 (Feldpausch	 et  al.	 2012),	 and	 thus	 to	 aboveground	
biomass.

LiDAR	 can	 also	 be	 used	 to	 determine	 the	 vertical	 profile	
of	 canopy	 tissues	 including	 foliar	 and	 some	 woody	 structures	
(Figure	 16.5).	 Waveform	 LiDAR	 instruments	 collect	 the	 full	
shape	of	 the	returning	 laser	pulse,	allowing	 for	detailed	 infor-
mation	on	the	structure	of	the	canopy	(Blair	and	Hofton	1999;	
Dubayah	 and	 Drake	 2000;	 Ni-Meister	 et  al.	 2001).	 If	 detailed	
canopy	structure	is	of	interest,	but	only	discrete-return	LiDAR	
data	are	available,	 it	 is	possible	 to	use	 these	data	 to	generate	a	
pseudowaveform.	This	method	aggregates	discrete	returns	into	
bins	over	spatial	extents	that	incorporate	multiple	laser	spots	in	
order	to	gain	an	aggregated	understanding	of	the	vertical	veg-
etation	 profile	 in	 the	 absence	 of	 waveform	 data	 for	 each	 laser	
pulse	(Muss	et al.	2011).	Vertical	profiles	are	indicative	of	canopy	
density,	vertical	distribution,	and	the	presence	of	undergrowth,	
all	of	which	can	provide	 information	on	 the	3D	structure	and	
habitat	 of	 forests	 (Parker	 1995;	 Lefsky	 et  al.	 1999;	 Clark	 and	
Clark	 2000;	 Weishampel	 et  al.	 2000;	 Drake	 et  al.	 2002;	 Asner	
et al.	2008;	Vierling	et al.	2008).

One	 of	 the	 most	 widespread	 uses	 for	 LiDAR-derived	 can-
opy	information	is	in	the	estimation	of	aboveground	biomass,	
also	 known	 as	 aboveground	 carbon	 density	 (ACD).	 Such	
approaches	have	been	applied	in	numerous	studies	of	conifer,	
broadleaf	 temperate,	 and	 tropical	 forest	 ecosystems	 (Nelson	
1988;	 Lefsky	 et  al.	 1999,	 2002,	 2005;	 Popescu	 et  al.	 2003;	
Næsset	and	Gobakken	2008;	van	Aardt	et al.	2008;	Asner	et al.	
2012c;	 Wulder	 et  al.	 2012).	 The	 mean	 canopy	 profile	 height	
(MCH)	has	been	used	as	the	canopy	structural	metric,	which	
relates	the	LiDAR	vertical	structure	data	to	ACD	(Lefsky	et al.	
2002;	 Asner	 et  al.	 2009).	 However,	 recent	 studies	 have	 indi-
cated	that	variations	in	sensor	characteristics	and	settings	can	
cause	significant	differences	in	the	MCH	metric	between	data	
acquisitions	 (Næsset	 2009),	 strongly	 indicating	 that	 top-of-
canopy	height	is	a	more	reliable	method	for	estimating	ACD	of	
tropical	forests	(Asner	and	Mascaro	2014).	The	use	of	LiDAR	
data	to	produce	estimates	of	ACD	that	closely	match	plot-level	
estimates	allows	 for	 the	mapping	and	monitoring	of	aboveg-
round	 carbon	 stocks	 at	 landscape	 scales	 and,	 with	 the	 fur-
ther	development	of	spaceborne	LiDAR,	potentially	regional/
biome	scales.

Table 16.3 Forest	Structural	Properties	Estimated	from	LiDAR,	along	with	an	Estimate	of	Scientific	Maturity	and	Example	References

Vegetation	Property	 Maturity	Level	 Example	References	

Total	canopy	height ✓✓✓ Dubayah	and	Drake	(2000),	Ni-Meister	et al.	(2001),	Drake	et al.	(2002),	and	Lim	et al.	(2003)
Mean	canopy	profile	height ✓✓✓ Lefsky	et al.	(1999,	2002,	2005)
Aboveground	biomass ✓✓ Nelson		(1988),	Lefsky	et al.	(1999,	2002,	2005),	Popescu	et al.	(2003),	Næsset	and	Gobakken	(2008),	van	Aardt	

et al.	(2008),	Asner	et al.	(2012c),	and	Wulder	et al.	(2012)
Leaf	area	density ✓ Sun	and	Ranson	(2000),	Lovell	et al.	(2003),	Riaño	et al.	(2004),	Morsdorf	et al.	(2006),	Richardson	et al.	

(2009),	Soldberg	et al.	(2009),	and	Vaughn	et al.	(2013)
Understory	presence ✓✓ Zimble	et al.	(2003)	and	Asner	et al.	(2008)

Note:	 Maturity	is	a	metric	of	relative	accuracy	as	depicted	in	the	literature,	with	one	checkmark	indicating	low	maturity	and	three	checkmarks	indicating	high	
maturity.
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16.4.2  Light Penetration

Canopy	 gaps,	 or	 openings	 in	 forest	 canopies,	 influence	 popu-
lation	 dynamics	 of	 forest	 trees	 by	 affecting	 forest	 structure,	
regeneration	dynamics,	and	species	composition	(Brokaw	1985;	
Denslow	1987).	Canopy	gaps	occur	at	scales	ranging	from	sin-
gle	branches	to	multiple	treefalls	and	result	 from	disturbances	
caused	by	natural	tree	life	cycles	(Asner	2013),	human	processes	
such	 as	 logging	 (e.g.,	 Nepstad	 et  al.	 1999;	 Asner	 et  al.	 2004b;	
Curran	et al.	2004),	and	environmental	factors	such	large-scale	
blowdowns	 (Chambers	 et  al.	 2013).	 Recently,	 airborne	 LiDAR	
data	from	a	number	of	tropical	forests	have	enabled	the	measure-
ment	of	millions	of	canopy	gaps	over	large	spatial	scales,	both	as	
single	measurements	and	with	repeat	collections,	improving	the	
understanding	 of	 static	 and	 dynamics	 gaps,	 respectively	 (e.g.,	
Magnussen	et al.	2002;	Kellner	et al.	2009;	Udayalakshmi	et al.	
2011;	Armston	et al.	2013).

Static	canopy-gap	size-frequency	distributions	(known	as λ)	
are	 strikingly	 similar	 across	 a	 wide	 range	 of	 tropical	 forest	
types	on	differing	geologic	substrates	and	within	differing	dis-
turbance	 regimes.	 This	 collective	 evidence	 suggests	 consistent	
turnover	rates	and	similar	mechanisms	of	gap	formation	across	
tropical	forests	(Kellner	and	Asner	2009;	Asner	et al.	2013,	2014).	
Deviations	 from	 this	 stable	 range	 of	 observed	 λ	 values	 poten-
tially	provide	another	metric	for	detecting	and	mapping	distur-
bance.	In	a	recent	study,	repeat	LiDAR	collections	permitted	the	
quantification	of	positive	height	 changes	 in	a	 forest	 canopy	 in	

Hawaii	and	illustrated	how	size	and	the	proximity	to	other	cano-
pies	influenced	the	outcome	of	competition	for	space	within	this	
forest	(Kellner	and	Asner	2014).

16.5  Integrating HSI and LiDAR

In	 recent	 years,	 HSI	 and	 LiDAR	 observations	 have	 been	 inte-
grated	using	two	approaches.	One	method	involves	the	acquisi-
tion	 of	 HSI	 and	 LiDAR	 data	 from	 separate	 platforms,	 such	 as	
from	different	aircraft,	followed	by	modeling	and	analysis	steps	
to	fuse	the	resulting	datasets	(e.g.,	Mundt	et al.	2006;	Anderson	
et al.	2008;	Jones	et al.	2010).	This	is	currently	the	most	common	
approach,	and	following	acquisition,	the	data	must	be	digitally	
coaligned	 using	 techniques	 such	 as	 image	 pixel–based	 coreg-
istration.	 These	 efforts	 usually	 yield	 an	 integrated	 data	 “cube”	
with	an	average	misalignment	of	one	pixel	or	so,	although	the	
scanning	and/or	array	patterns	of	the	HSI	and	LiDAR	data	may	
yield	much	higher	coalignment	errors.

Full waveform
lidar

Discrete return
lidar

Figure 16.4 Illustration	of	waveform	and	discrete-return	measure-
ments	of	a	tree.	While	both	provide	information	on	the	vertical	struc-
ture	of	canopies,	discrete-return	sampling	records	the	returning	laser	
pulse	 at	 specified	 peaks	 (e.g.,	 first	 and	 last	 pulse)	 of	 the	 return	 wave,	
whereas	 waveform	 sampling	 collects	 the	 full	 shape	 of	 the	 returning	
pulse.	(Reprinted	from	Lim,	K.	et al.,	Prog. Phys. Geogr.,	27,	88,	2003).
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Figure 16.5 LiDAR	 cross-sectional	 views	 of	 four	 mature	 tropical	
forests	 in	 the	Peruvian	Amazon,	Panamanian	Neotropics,	 southeastern	
Madagascar,	and	Hawaii	depict	3D	forest	structure	along	a	100	m	long	×	
20	m	wide	transect.	Right-hand	panels	show	mean	and	spatial	variance	of	
LiDAR	vertical	canopy	profiles	for	all	returns	in	a	1 km2	area	centered	on	
each	cross	section.	Vertical	canopy	profiles	are	generally	consistent	across	
the	four	study	sites,	yet	the	Hawaiian	forest	contains	the	most	pronounced	
groundcover,	understory,	and	canopy	layers.	(Reprinted	from	Asner,	G.P.	
et al.,	Oecologia,	168,	1147,	2012b).
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A	second,	rapidly	growing	approach	to	HSI	and	LiDAR	data	
integration	involves	the	comounting	of	instruments	on	the	same	
platform,	whether	on	board	aircraft	or	an	unmanned	aerial	vehi-
cle	(UAV)	(Asner	et al.	2007).	Integration	steps	range	from	colo-
cating	 the	 instruments	 on	 the	 same	 mounting	 plate	 on	 board	
the	 aircraft	 or	 UAV,	 to	 precise	 time	 registration	 of	 each	 mea-
surement,	to	final	data	fusion	using	ray	tracing	models	for	each	
instrument	(Asner	et al.	2012a).	Each	of	these	steps	is	key	to	pro-
ducing	a	highly	integrated	dataset,	reducing	coalignment	issues	
such	that	the	data	can	be	treated	as	one	information	vector	per	
unit	ground	sample	(e.g.,	one	pixel).	The	onboard	and	postflight	
fusion	of	HSI	and	LiDAR	data	developed	and	deployed	by	 the	
CAO	(http://cao.carnegiescience.edu)	has	been	replicated	and	is	
currently	being	used	by	the	U.S.	NEON’s	Airborne	Operational	
Platform	program	(http://www.neoninc.org/science/aop).

16.5.1  Benefits of Data Fusion

The	 benefits	 of	 HSI	 and	 LiDAR	 data	 fusion	 include	 increased	
data	 dimensionality,	 constraints	 on	 the	 interpretation	 of	 one	
portion	 of	 the	 dataset	 using	 another	 portion,	 and	 filtering	 of	
data	 to	 specific	 observation	 conditions	 or	 specifications.	 The	
dimensionality	of,	or	degrees	of	freedom	within,	a	fused	dataset	
increases	with	the	integration	of	complementary	or	orthogonal	
observations	such	as	chemical	or	physiological	metrics	from	HSI	
and	structural	or	architectural	measures	from	LiDAR.	A	highly	
demonstrative	example	can	be	taken	from	two	integrated	HSI–
LiDAR	 datasets	 collected	 with	 the	 CAO	 Airborne	 Taxonomic	
Mapping	System	(Figure	16.6).	One	dataset	was	collected	over	
a	 portion	 of	 Stanford	 University	 in	 2011,	 and	 the	 other	 taken	
over	 a	 remote	 Amazonian	 rainforest	 in	 the	 same	 year.	 In	 the	
Stanford	case,	 the	LiDAR	data	alone	contain	about	25	degrees	
of	freedom	for	a	200	ha	area	comprised	buildings	with	varying	
architecture,	vegetation	ranging	from	grasses	to	trees,	roads	and	
pathways,	and	other	built	surfaces.	Here,	degrees	of	freedom	are	
quantitatively	 assessed	 using	 principal	 component	 analysis,	 so	
each	degree	is	orthogonal	to	or	unique	from	the	others	(Asner	
et al.	2012a).	A	72-band	VNIR	image	of	the	same	Stanford	scene,	
taken	from	the	same	aircraft,	contains	about	50	degrees	of	free-
dom.	Combined,	the	VNIR	HSI	and	LiDAR	provide	about	100	
degrees	of	freedom.	A	VSWIR	imaging	spectrometer	on	board	
the	 same	 aircraft	 provides	 about	 260	 degrees	 of	 freedom	 in	
the	 Stanford	 case.	 In	 conjunction,	 the	 LiDAR	 and	 VNIR	 and	
VSWIR	HSI	offer	more	than	330	orthogonally	aligned	sources	
of	 information.	 In	 the	 Amazon	 forest	 case,	 data	 fusion	 yields	
similar	 increases	 in	 data	 dimensionality,	 more	 than	 doubling	
the	information	content	by	sensor	fusion	over	that	which	can	be	
achieved	by	any	one	sensor.

A	 second	 powerful	 use	 of	 combined	 HSI	 and	 LiDAR	 data	
involves	 constraint	 of	 interpretation	 and/or	 filtering	 of	 one	
data	stream	relative	to	the	other.	Looking	down	upon	a	forest	
canopy,	one	observes	strong	variation	in	bright	and	dark	por-
tions	of	the	canopy,	as	well	as	gaps	and	spectrally	inconsistent	

observation	 conditions	 (Figure	 16.7).	 As	 a	 result,	 reflectance	
analysis	of	forests	is	often	an	underdetermined	problem	involv-
ing	variation	in	3D	architecture,	leaf	layering	(LAI),	and	foliar	
biochemical	constituents.	This	variation	 in	 illumination	con-
ditions	occurs	between	pixels	in	high-resolution	HSI	data	and	
within	pixels	in	lower	resolution	HSI	data.	One	of	many	pos-
sible	 ways	 to	 constrain	 observation	 conditions	 for	 improved	
HSI-based	analysis	of	forest	canopy	traits	is	to	use	the	LiDAR	
(Asner	 and	 Martin	 2008;	 Dalponte	 et  al.	 2008;	 Colgan	 et  al.	
2012b).	For	example,	LiDAR	maps	of	top-of-canopy	structure	
can	be	used	to	precisely	model	sun	and	viewing	geometry	on	
the	canopy	surface	in	each	pixel.	Combined	with	simple	filter-
ing	of	the	HSI	data	based	on	the	NDVI	or	other	narrowband	
indices,	 an	 HSI	 image	 can	 be	 partitioned	 into	 regions	 most	
suitable	 for	 a	 particular	 type	 of	 analysis.	 Biochemical	 analy-
ses	are	particularly	sensitive	to	this	filtering	process,	and	much	
higher	performances	in	biochemical	retrievals	can	be	achieved	
based	 on	 combined	 HSI–LiDAR	 filtering	 (Asner	 and	 Martin	
2008).	Still	other	approaches	to	integrate	HSI	and	LiDAR	data	
have	 yet	 to	 be	 explored,	 such	 as	 in	 the	 full	 3D	 analysis	 and	
modeling	 of	 canopy	 structural	 and	 functional	 traits.	 These	
approaches	 will	 become	 more	 common	 with	 the	 rise	 of	 inte-
grated	data	fusion	systems.
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Figure 16.6 Integration	 of	 HSI	 and	 LiDAR	 sensor	 hardware,	 and	
data	streams,	provides	a	uniquely	powerful	way	to	greatly	increase	the	
inherent	 dimensionality	 of	 the	data	 collected	 over	 forested	areas	and	
other	 ecosystems.	 For	 two	 sample	 200	 ha	 areas	 (Stanford	 University	
and	a	lowland	Amazonian	forest),	individual	LiDAR	and	HSI	sensors	
provide	highly	dimensional	data	as	assessed	with	principal	components	
analysis.	The	dimensionality	of	the	data	increased	when	data	are	ana-
lyzed	simultaneously.	Here,	VNIR	is	a	visible-to-near	infrared	HSI	and	
VSWIR	 is	 a	 visible-to-shortwave	 infrared	 HSI.	 All	 sensors	 combined	
are	referred	to	as	the	Airborne	Taxonomic	Mapping	Systems	on	board	
the	CAO.	(Reprinted	from	Asner,	G.P.,	Remote Sens. Environ.,	124,	454,	
2012a).
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Figure 16.7 Prescreening	of	(a)	HSI	data	using	fused	(b)	LiDAR	data.	This	can	be	accomplished	in	various	ways,	and	an	example	is	shown	here.	
(c)	A	minimum	NDVI	threshold	of	0.8	ensures	sufficient	foliar	cover	in	the	analysis.	(d)	Combining	LiDAR	and	solar-viewing	geometry,	a	filtering	
mask	is	generated	to	remove	pixels	in	shade	or	of	ground	and	water	surfaces.	(e)	The	resulting	suitability	image	provides	an	indication	of	pixels	that	
can	be	used	for	biophysical,	biochemical,	and/or	physiological	analysis.
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16.6  Conclusions

HSI	 and	 LiDAR	 mapping	 provides	 independent	 and	 highly	
complementary	data	on	forest	canopies	and	whole	ecosystems.	
Here,	we	summarized	sources	of	HSI	and	LiDAR	data,	their	gen-
eral	uses	in	determining	forest	structural	and	functional	prop-
erties,	and	the	potential	value	of	collecting	and	analyzing	HSI	
and	LiDAR	together	via	hardware	integration	and	data	fusion.	
Much	of	 the	science	of	HSI	and	LiDAR	analysis	of	 forests	will	
remain	 in	 the	 airborne	 domain	 until	 orbital	 instrumentation	
is	 deployed	 and	 made	 available	 to	 the	 scientific	 research	 and	
application	communities.	 In	 light	of	 the	myriad	 studies	 found	
throughout	the	remote	sensing,	forest	science,	and	conservation	
research	 literature,	 it	 is	 clear	 that	 the	 time	 is	 right	 for	 a	 rapid	
expansion	of	HSI	and	LiDAR	data	collection	and	sharing	efforts	
worldwide.
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