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Acronyms and Definitions

ACD	 Aboveground carbon density
AIS	 Airborne imaging spectrometer
ALI	 Advanced Land Imager
Amax	 Maximum rate of photosynthesis
APAR	 Absorbed photosynthetically active radiation
ATLAS	 Advanced Topographic Laser Altimeter System
AVIRIS	 Airborne visible/infrared imaging spectrometer
CAO	 Carnegie Airborne Observatory
CASI	 Compact Airborne Spectrographic Imager
CHRIS	 Compact High-Resolution Imaging Spectrometer
DASF	 Directional area scattering factor
EnMAP	 Environmental Mapping and Analysis Program
EO-1	 Earth Observing-1 (Hyperion)
ESA	 European Space Agency
ETM+	 Enhanced Thematic Mapper Plus
ETR	 Electron transport rate
EWT	 Equivalent water thickness
GLAS	 Geoscience Laser Altimeter System
HSI	 Hyperspectral imaging
HyspIRI	 Hyperspectral and Infrared Imager
ICESat	 Ice, Cloud, and land Elevation Satellite

Jmax	 Maximum electric transport rate
LAD	 Leaf angle distribution
LAI	 Leaf area index
LiDAR	 Light detection and ranging
LMA	 Leaf mass per area
LUE	 Light use efficiency
LVIS	 Land, Vegetation, and Ice Sensor
MCH	 Mean canopy profile height
N	 Nitrogen
NCALM	 National Center for Airborne Laser Mapping
NDVI	 Normalized difference vegetation index
NEON	 National Ecological Observatory Network 
NIR	 Near infrared
NPP	 Net primary productivity 
NPQ	 Nonphotochemical quenching
NPV	 Nonphotosynthetic vegetation
NSF	 National Science Foundation
PAR	 Photosynthetically active radiation
PLSR	 Partial least squares regression
PRI	 Photochemical Reflectance Index
SIF	 Solar-induced fluorescence
SLA	 Specific leaf area
SNR	 Signal-to-noise ratio
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SWIR	 Shortwave infrared
UAV	 Unmanned aerial vehicle
Vcmax	 Maximum rate of carboxylation
VNIR	 Visible to near infrared
VSWIR	 Visible to shortwave infrared

16.1  Introduction

Forests store about three-quarters of all carbon stocks in vegeta-
tion in the terrestrial biosphere and harbor an array of organisms 
that comprise most of this carbon (IPCC 2000). The distribution 
of carbon and biodiversity in forests is spatially and temporally 
heterogeneous. The complex, 3D arrangement of plant species 
and their tissues has always challenged field-based studies of 
forests. Remote sensing has long endeavored to address these 
challenges by mapping the cover, structure, composition, and 
functional attributes of forests, and new approaches are con-
tinually being developed to increase the breadth and accuracy of 
remote measurements.

Over the past few decades, two technologies—hyperspectral 
imaging (HSI) and light detection and ranging (LiDAR)—have 
rapidly advanced from use in testbed-type research to appli-
cations ranging from ecology to land management. HSI, also 
known as imaging spectroscopy, involves the measurement of 
reflected solar radiance in narrow, contiguous spectral bands 
that form a spectrum for each image pixel. LiDAR uses emit-
ted laser pulses in a scanning pattern to determine the distance 
between objects such as canopy foliage and ground surfaces. 
Individually, HSI and LiDAR are advancing the study of forests 
at landscape to global scales, uncovering new spatial and tem-
poral patterns of forest biophysical and biochemical properties, 
as well as physiological processes. When combined, HSI and 
LiDAR can provide ecological detail at spatial scales unachiev-
able in the field. This chapter discusses HSI and LiDAR data 
sources, techniques, applications, and challenges in the context 
of forest ecological research.

16.2  HSI and LiDAR Data

16.2.1  HSI Data Sources

The availability of HSI for ecological applications is growing as 
the utility of these data has increasingly been recognized. HSI 
can be collected either with airborne sensors that have a limited 
spatial coverage but high-spatial resolution or with spaceborne 
sensors capable of capturing data globally, but generally with 
coarser spatial resolution. There are an expanding number of 
government, private, and commercial airborne HSI sensors. In 
addition, one spaceborne HSI sensor—Earth Observing-1 (EO-
1) Hyperion—has been in operation as a technology demon-
stration since November 2000. Other orbital sensors are in the 
planning or development stages in hopes of further extending 
the spatial coverage of available imaging spectroscopy (Table 
16.1).

Airborne HSI sensors have been operating since the 1980s. 
An early system was NASA’s airborne imaging spectrometer 
(AIS), followed later by the airborne visible/infrared imaging 
spectrometer (AVIRIS), which is still in operation and provides 
data to NASA-supported investigators. Newer instruments 
including the Carnegie Airborne Observatory (CAO) visible-
to-shortwave-infrared (VSWIR) imaging spectrometer provide 
increased spectral resolution and performance (e.g., signal-to-
noise ratio [SNR]) over previous technology (Table 16.1). The 
U.S. National Science Foundation’s (NSF) National Ecological 
Observatory Network (NEON) has created three copies of the 
CAO VSWIR, which will provide annual collection of HSI data 
for each of its core research sites across the United States.

Beyond government and privately funded instruments for 
research, a number of HSI sensors have been built for com-
mercial applications. For example, the Compact Airborne 
Spectrographic Imager (CASI, CASI-2, CASI-1500) and HyMap 
provide high-performance visible-to-near-infrared (VNIR) 
(365–1052  nm) and VSWIR (440–2500  nm) measurements, 
respectively (Table 16.1).

Table 16.1  Examples of Current and Planned Airborne and Spaceborne HSI

Sensor 
Spectral 

Range (nm) 
Spectral 
Bands 

Spectral 
Resolution (nm) 

Spatial 
Resolution (m) Reference 

Airborne
AVIRIS 400–2450 224 10 2.0+ Green et al. (1998)
AVIS-2 400–900 64 9 2.0+ Oppelt and Mauser (2007)
CAO VSWIR 380–2510 428 5 0.5+ Asner et al. (2012)
HYDICE 400–2500 206 8–15 1.0+ Basedow et al. (1995)
NEON VSWIR 380–2500 212 10 0.5+ www.neoninc.org
AISA 380–2500 275 3.5–12 1+ www.specim.fi
CASI 365–1052 288 2–10 0.25+ www.itres.com
HyMap 440–2500 100–200 10–20 2.0+ Cocks et al. (1998)

Spaceborne
EO-1 Hyperion 400–2500 220 10 30 Folkman et al. (2001)
Proba-1 CHRIS 415–1050 18–62 1.3–12 18, 36 Barnsley et al. (2004)
EnMAP (planned) 420–2450 98–130 6.5–10 30 Stuffler et al. (2007)
HyspIRI (planned) 380–2500 210 10 60 hyspiri.jpl.nasa.gov

K22130_C016.indd   430 6/9/2015   9:52:33 AM



431Forest Biophysical and Biochemical Properties from Hyperspectral and LiDAR Remote Sensing

In comparison to airborne systems, there are fewer space-
borne sensors collecting hyperspectral data (Table 16.1). NASA’s 
EO-1 Hyperion has far exceeded its intended 1-year life span, 
performing for over a decade (Riebeek 2010). Thenkabail et al. 
(2004) showed that Hyperion data, when compared to data from 
even the most advanced broadband sensors (Enhanced Thematic 
Mapper Plus [ETM+], IKONOS, and Advanced Land Imager 
[ALI]) in orbit at that time, yielded models that explained 36%–
83% more of the variability in rainforest biomass and produced 
land use/land cover classifications with 45%–52% higher accura-
cies. The European Space Agency (ESA) also has a hyperspec-
tral sensor (Compact High-Resolution Imaging Spectrometer 
[CHRIS]) on board the Proba-1 satellite, which observes in the 
visible and near-infrared (NIR) portion of the spectrum, though 
at higher spatial resolutions than Hyperion it is only able to 
record in 18 bands in this range (Barnsley et al. 2004). In addi-
tion, Germany is planning the launch of a hyperspectral sen-
sor Environmental Mapping and Analysis Program (EnMAP) 
in 2017, and NASA is planning a mission called Hyperspectral 
and Infrared Imager (HyspIRI) for sometime near the year 2020. 
The addition of these spaceborne sensors will greatly contribute 
to the spatial and temporal coverage of hyperspectral data for 
forest research.

16.2.2  LiDAR Data Sources

LiDAR data sources are both numerous and variable, a reflection 
of the demand for airborne LiDAR in a wide variety of scien-
tific and engineering applications. Recent and upcoming space-
borne LiDAR systems, described in this section, offer new data 
for forest monitoring. While the amount of LiDAR data being 
collected is increasing, there is a great deal of variability in the 
quality, type (discrete return vs. waveform), and spatial resolu-
tion of the resulting data.

LiDAR datasets for the United States are publicly available 
from a variety of sources. The National Center for Airborne 
Laser Mapping (NCALM; www.ncalm.cive.uh.edu) uses com-
mercially sourced LiDAR sensors to collect high-resolution 
data (>2 laser spots m−2) for NSF-funded projects or for other 
select projects. These data are currently made available to the 
public within 2 years of collection through the NSF-supported 
OpenTopography program (www.opentopography.org), which 
provides a platform to access these data, along with other 
LiDAR datasets contributed by researchers. NASA’s Land, 
Vegetation, and Ice Sensor (LVIS), which has been operating in 
North America since the late 1990s, provides waveform data at 
coarser resolution of 10–25 m diameter laser spots in support of 
NASA studies (Blair et al. 1999). In addition, due to the increas-
ing availability of commercial LiDAR acquisition services, 
many state and local governments have commissioned datasets. 
In the United States, the National Oceanic and Atmospheric 
Administration provides an inventory of these data (http://
www.csc.noaa.gov/inventory/). There are no standard character-
istics of these datasets, as they all vary with sensor parameters, 
elevation of data collection, and the density of returns collected. 

These heterogeneous data collection conditions hinder general 
assessments of the quality of these data.

In addition to airborne LiDAR data, NASA’s Geoscience Laser 
Altimeter System (GLAS) Instrument, on board the Ice, Cloud, 
and land Elevation Satellite (ICESat), was the first spaceborne 
LiDAR instrument (Abshire et al. 2005). GLAS collected wave-
form data with 70 m spot diameter and 170 m spot intervals. 
The GLAS instrument was in operation from 2003 to 2009, 
and the data are publically available (icesat.gsfc.nasa.gov). The 
ICESat-2 is expected to launch in 2016, carrying the Advanced 
Topographic Laser Altimeter System (ATLAS).

16.2.3  Data Quality

The vast majority of HSI and LiDAR instruments have been 
deployed on aircraft, so the geographic coverage, ground sam-
pling distance (spatial resolution and/or laser spot spacing), 
flying altitudes, and atmospheric conditions have varied enor-
mously, making comparisons of instrument performances 
difficult to achieve. Nonetheless, comparative use of these 
instruments often reveals that sensor performance is paramount 
to achieving quality estimates of vegetation biophysical and bio-
chemical properties.

Three sensor qualities have proven particularly important 
in the effort to achieve high-fidelity data output. These include 
detector uniformity, instrument stability, and SNR performance 
of the measurement (Green 1998). From the HSI perspective, 
each of these metrics of quality is important. Uniformity refers 
to the detailed way in which spectra are collected in the cross 
track and spectral directions on the instrument detector. Many 
HSI instruments fail to meet the often-cited 95%–98% absolute 
uniformity standard. One of the most insidious errors in uni-
formity occurs in the spectral direction. Most area-array HSI 
sensors fail to keep the spectral measurement aligned “down 
spectrum” from the VNIR (e.g., 400–1100 nm) and throughout 
the shortwave infrared (SWIR) (e.g., 1100–2500  nm), leading 
to a mismatch in different parts of the spectrum projected onto 
the Earth’s surface. Another HSI performance issue is stability, 
which refers to the repeatability of the measurement across the 
imaging detector and/or over time. Much of the stability issue 
rests in the performance of the electronics and temperature 
stabilization subsystems. Finally, SNR is a quality that reports 
the strength and accuracy of the measurement signal relative to 
noise generated by the electronics and optics. SNR varies widely 
from instrument to instrument and also with environmental 
conditions such as temperature and humidity. Readers should be 
cautious when reviewing potential sources of HSI data, as pro-
viders may report SNR on either a bright target (e.g., white refer-
ence) or with enlarged camera apertures and/or inappropriately 
long integration times (equivalent to shutter speed). This will 
greatly inflate reported SNR values. For vegetation applications, 
SNR performances should be reported on dark targets in the 
5%–8% reflectance range, typical for plants in the visible spec-
trum (350–700 nm), and with integration times that are appro-
priate for airborne or spaceborne ground speeds (usually 10 ms).
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LiDAR measurements also have SNR, uniformity, and sta-
bility challenges. The shape, noisiness, and strength of the 
outbound laser pulses largely affect LiDAR SNR. Commercial 
LiDARs come in a wide range of SNR performance levels. For 
forest science, strong pulse strength (e.g., high-wattage laser 
diodes) is necessary to overcome absorption by the vegetation 
canopy. In addition, uniformity tends to be overlooked by scien-
tists prior to data source selection; it is highly advisable to select 
LiDAR instruments that deliver a uniform scan pattern across 
the swath of the data set. Without strict control over this fac-
tor, the user will end up with high data density in the middle of 
the scan and low-data density at the edges of the scan. Finally, 
stability is a key issue with LiDAR instrumentation. Many com-
mercial LiDARs exhibit instability as they change temperature, 
pressure, and humidity, resulting in variability in the quality 
of the laser data throughout the course of a mapping flight or 
research campaign.

16.3  HSI Remote Sensing of Forests

Forests, as fundamental components of the Earth’s biosphere, 
have been a major focus of study from the beginning of HSI data 
collection. HSI provides a quantitative measure of the sunlight 
reflected from the forest canopy and the properties therein. The 
extended range and high-fidelity narrowband resolution of HSI 

offers enhanced capability for mapping forest biochemical and 
biophysical constituents along with physiological processes that 
contribute to the shape of the reflectance spectrum (Table 16.2). 
HSI data are used in a number of ways to assess leaf and can-
opy properties, namely, semiempirical methods utilizing nar-
rowband spectral indices, regression modeling, and radiative 
transfer model inversion. As the HSI data quality improves, so 
do the results derived from these methods. Most recently, HSI 
combined with improved analytical methods has dramatically 
advanced species mapping and land cover classification.

16.3.1  Biophysical Properties

HSI data can uncover biophysical properties of ecological sig-
nificance at both the leaf and canopy scales. Properties related 
to forest composition and leaf area index (LAI) are perhaps best 
retrieved from HSI data, whereas some properties like canopy-
gap distribution and leaf angle distribution (LAD) are more 
readily determined from LiDAR. LAI (leaf area per unit ground 
area, m2 m−2) is one of the most important canopy properties 
because it is directly related to productivity and water use, but 
variation in LAI can also indicate stress resistance and competi-
tion for light (see Waring 1983; Asner et al. 2004a). Field data and 
models show that LAI and LAD are primary controls on canopy 
reflectance in dense vegetation (Gong et al. 1992; Asner 1998). 

Table 16.2  Forest Biochemical and Physiological Properties Estimated from HSI, along with a Summary of Example Methods (Spectral 
Indices), Relevant Spectral Bands, Maturity, and References

Vegetation 
Property Estimation Method(s) Relevant Bands (nm) Maturity Level Example References 

Foliar 
nitrogen

Normalized difference nitrogen 
index; band depth analysis; PLSR; 
RT model inversion

1510, 1680; 
400–2500

✓✓ Kokaly  (2001), Serrano et al. (2002), Smith et al. (2003), 
Asner and Vitousek (2005), and Dahlin et al. (2013)

LUE PRI 531, 570 ✓✓ Gamon et al. (1992, 1997), Gamon and Surfus (1999), 
Stylinksi et al. (2000), Guo and Trotter (2004), Hilker 
et al. (2008), Filella et al. (2009), Garbulsky et al. 
(2011), and Ripullone et al. (2011)

Foliar 
carotenoids

Various narrowband spectral 
indices

510, 550, 700; 445, 
680, 800

✓✓ Gitelson et al. (2002) and Peñuelas et al. (1995)

Foliar 
anthocyanin

Various narrowband spectral 
indices

400–700 ✓ Gamon and Surfus (1999), Gitelson et al. (2001, 2006), 
and Van den Berg and Perkins (2005)

APAR Simple ratio, NDVI 400–700 ✓✓✓ Jordan  (1969) and Rouse et al. (1974)
LAI Various narrowband spectral 

indices; RT model inversion
700–1300 ✓✓✓ Rouse et al. (1974), Huete (1988), Gao et al. (1995), 

Rondeaux et al. (1996), Haboudane et al. (2002), 
Gitelson (2004), and Lim et al. (2004)

LMA PLSR 400–2500 ✓ Asner et al. (2011)
Foliar 

chlorophylls
Various narrowband spectral 

indices; RT model inversion
550, 670, 700; 

800–1300; 690–725
✓✓✓ Kim  (1994), Daughtry et al. (2000), Zarco-Tejada et al. 

(2001), Gitelson et al. (2006), and Zhang et al. (2008)
Foliar water Various narrowband spectral 

indices
820, 1600; 860, 1240; 

900, 970
✓✓ Hunt and Rock (1989), Peñuelas et al. (1997), and 

Dahlin et al. (2013)
Canopy water EWT; RT model inversion 800–2500 ✓✓✓ Hunt and Rock (1989), Gao and Goetz (1990), Gao  

(1996), Peñuelas et al. (1997), and Roberts et al. (2004)
Foliar lignin 

and cellulose
Cellulose absorption index; 

normalized difference lignin index
2015, 2106, 2195; 

1680, 1754
✓✓ Daughtry  (2001) and Serrano et al. (2002)

Foliar carbon PLSR 1500–2500 ✓ Dahlin et al. (2013)

Note:	 Maturity is a metric of relative accuracy as depicted in the literature, with one checkmark indicating low maturity and three checkmarks indicating high 
maturity. RT, radiative transfer; PLSR, partial least squares regression.
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While LAI is detectable from broadband sensors, studies show 
that HSI data and analysis methods optimized for HSI are more 
accurate (e.g., Spanner et al. 1994; Gong et al. 1995). Lee et al. 
(2004) examined four structurally different land cover types 
and showed that HSI red-edge and SWIR bands produced the 
best estimates of LAI. Equivalent water thickness (EWT, mm) 
produces better estimates of LAI than do pigment-based indi-
ces such as the normalized difference vegetation index (NDVI) 
(Roberts et al. 1998), with LAI values (up to nine) that far exceed 
the sensitivity range of NDVI and other indices (Roberts et al. 
2004). Water indices derived from HSI have also been used to 
quantify loss of LAI from pest-related defoliation and other fac-
tors (e.g., White et al. 2007).

At the leaf level, leaf mass per area (LMA, g m−2 and its recipro-
cal; specific leaf area [SLA], m2 g−1) is a key foliar property that is 
highly correlated with light harvesting and potential plant produc-
tivity (Niinemets 1999; Westoby et al. 2002). LMA can be defined 
for foliage throughout the canopy or in any given canopy layer, 
depending upon the ecological question. While there is enormous 
range in LMA within a given plant functional type and among 
coexisting species, LMA is broadly correlated with temperature 
and precipitation at the global level (Wright et al. 2004). Higher 
temperatures, drier conditions, and higher irradiance are associ-
ated with higher values of LMA. Leaves with higher LMA are built 
for defense and longer life spans, creating higher resource use 
efficiency per nutrient acquired (Poorter et al. 2009). Conversely, 
lower LMA values are found in fast-growing species, often with 
higher nutrient concentrations and photosynthetic rates (Wright 
et  al. 2004). In addition, there is a strong degree of taxonomic 
organization to LMA within forest communities (Asner et  al. 
2014). Because LMA is a function of leaf thickness and is cor-
related with total carbon and nitrogen, it is uniquely detectable 
in HSI data and has been estimated from inversion of radiative 
transfer models such as the PROSPECT model (Jacquemoud et al. 
2009), chemometric analytical methods (Asner et al. 2011), and 
HSI-optimized SWIR indices (le Maire et al. 2008). The results 
from these studies conform to field measurements.

16.3.2  Biochemical Properties

The foremost motivation for biochemical detection is to better 
assess the spatiotemporal status and trends of forest canopy func-
tioning, especially those related to fluxes of water, carbon, and 
nutrients. The list of plant biochemicals that have been identified 
and quantified using HSI data is extensive (Table 16.2) and has 
received several detailed reviews (Blackburn 2007; Kokaly et al. 
2009; Ustin et al. 2009; Homolová et al. 2013). Many studies have 
found strong correlations between remotely sensed foliar nitro-
gen content and photosynthetic capacity or net primary produc-
tion (Kokaly et al. 2009; Townsend et al. 2013), despite the small 
fraction of biomass comprised nitrogen. Most of these studies 
have been based on partial least squares regression (PLSR) anal-
ysis (Ollinger et al. 2002; Smith et al. 2002; Martin et al. 2008) of 
the full spectrum or spectral matching and continuum removal 
techniques (Kokaly 2001). Feilhauer et al. (2011) and Homolová 

et al. (2013) show that multiple wavelengths throughout the 400–
2500 nm range have enabled nitrogen detection, indicating that 
nitrogen-related spectral features may vary by site, species, or 
phenological state.

Vegetation indices (Zarco-Tejada et al. 1999, 2001), semiem-
pirical indices (e.g., Gitelson et  al. 2003, 2006), and radiative 
transfer models (Zarco-Tejada et al. 2001, 2004; Féret et al. 2008, 
2011) have been used to characterize growth-related foliar chem-
icals (e.g., nitrogen and chlorophyll pigments), yet other studies 
demonstrate that remote sensing of canopy structure also aids 
quantitative retrieval of biochemical properties (e.g., Zhang 
et al. 2008; Hernández-Clemente et al. 2012; Knyazikhin et al. 
2013a,b,c; Ollinger et al. 2013; Townsend et al. 2013) (Figure 16.1). 
Asner and Warner (2003) conclude that quantitative informa-
tion on gap fraction and tree structure is needed to validate or 
constrain remote sensing models to accurately estimate chem-
istry and energy exchange. Possible ways to account for struc-
ture in the retrieval of foliar chemistry include canopy radiative 
transfer models, LiDAR, and other methods that account for 
intra- and intercanopy gaps, self-shading, and stand structure 
(see Section 16.5.1). Many proposed methods remain untested, 
including the directional area scattering factor (DASF), which 
is a function based on three wavelength invariant parameters: 
canopy interceptance, probability of recollision, and directional 
gap density (Lewis and Disney 2007; Schull et  al. 2007, 2011; 
Knyazikhin et al. 2013a). Still other researchers have argued that 

450
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Figure 16.1  (a) LAI image of a black spruce forest (53.2% coni-
fer, 16.1% deciduous species, and 21.1% grass) near Sudbury, Ontario, 
Canada. The image is derived based on a relationship between the 
simple ratio (near infrared/R) and LAI (r2 = 0.88). (b). Chlorophyll a 
+ b content distribution per unit ground area. The image combines 
the retrieved leaf chlorophyll a + b content for the three cover types 
(r2 = 0.47) times the LAI. The chlorophyll data were analyzed using the 
4-Scale geometrical–optical model to characterize the effect of struc-
ture on above canopy reflectance and inversion of the PROSPECT leaf 
model to estimate pigment concentration. Data from 72-band Compact 
Airborne Spectrographic Imager (HSI) averaged from 2 m pixel resolu-
tion to 20 m. (Reprinted from Zhang, Y. et al., Remote Sens. Environ., 
112, 3234, 2008.)
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the canopy architecture of a species is an integrated component 
of its strategy for resource capture and therefore should covary 
with chemistry (Ollinger et al. 2013; Townsend et al. 2013).

Foliar and canopy water content has also received a signifi-
cant amount of attention due to its relationship with transpira-
tion and plant water stress (Ustin et al. 2012; Hunt et al. 2013). 
The water absorption signal has a large effect on plant spectra, 
from small absorptions in the NIR at 970 and 1240 nm, acces-
sible through HSI data, to a large broad absorption across the 
entire SWIR (1300–2500 nm). Gao and Goetz (1995) developed 
one of the first narrowband indices for the quantification of 
EWT of vegetation. The values derived for EWT from AVIRIS 
data were tested against field data from the Harvard Forest, 
Massachusetts. HSI also offers the unique ability to differentiate 
between different phases of water (atmospheric water vapor and 
the moisture content of vegetation), for which the absorption 
maxima are offset by about 40–50  nm (Gao and Geotz 1990). 
This ability to quantify atmospheric water aids in the statisti-
cal modeling of the atmosphere such that water vapor signals 
can be removed, permitting proper estimation of the underlying 
liquid water stored in vegetation (Green et  al. 1989). Recently, 
Cheng et al. (2013b) showed that it is possible to monitor small 
diurnal changes in water content from optimized indices and 
wavelet analysis that provide information on plant water status 
and whether root uptake can support full transpiration demand.

Nonpigment materials in the forest canopy range from foliar 
carbon constituents, such as lignin and cellulose, to dead leaves, 
stems, or remaining reproductive structures of flowers and 
fruits. The detection and quantification of these materials, some-
times referred to as dry matter or nonphotosynthetic vegetation 
(NPV), is often used as an indicator of canopy stress and may be 

important for quantifying the contribution of plant litter to for-
est carbon pools. Particularly after foliage has lost pigments and 
water, the cellulose–lignin absorptions become easily detectable 
with HSI data through narrowband methods such as the cel-
lulose absorption index (Daughtry 2001; Daughtry et al. 2005), 
spectral mixture analysis (Asner and Lobell 2000; Roberts et al. 
2003a), chemometric approaches like PLSR (Asner et al. 2011), 
or radiative transfer models (Riaño et  al. 2004; Jacquemoud 
et al. 2009). Kokaly et al. (2007, 2009) used continuum removal 
combined with a spectral library to reveal a 2–3 nm shift in the 
cellulose–lignin absorption feature when the concentration of 
lignin increases, demonstrating the utility of HSI in quantify-
ing subtle variations in canopy carbon. Numerous examples of 
forest NPV quantification also exist in the HSI literature (e.g., 
Ustin and Trabucco 2000; Roberts et al. 2004; Guerschman et al. 
2009). Dry matter signatures in the HSI spectrum have been 
used to assess whether canopies were subjected to insect defolia-
tion, drought stress (White et al. 2007; Fassnacht et al. 2014), or 
root pathogen damage (Santos et al. 2010).

HSI data have significant potential for mapping forest 
composition at species and community levels, based largely 
on their biochemical attributes (Figure 16.2). Many examples 
have been published using various analytical approaches with 
airborne HSI images (e.g., Martin et al. 1998; Clark et al. 2005; 
Bunting and Lucas 2006; Bunting et al. 2010), EO-1 Hyperion 
satellite data (Townsend and Foster 2002), time series of 
Hyperion data (Kalacska et  al. 2007; Somers and Asner 
2013), and combinations of airborne HSI imagers and LiDAR 
(Dalponte et  al. 2007; Jones et  al. 2010; Colgan et  al. 2012a; 
Naidoo et  al. 2012; Baldeck et  al. 2014). In recent years, the 
ability to map species and detailed land cover has significantly 

Aleurites moluccana
Mangifera indica L.
Psidium cattleianum

Cananga orodata
Melochia umbellata
Psidium guajava

Cecropia peltata
Metrosideros polymorpha
Syzygium jambos

Eucalyptus robusta
Persea americana
Zingiber zerumbet

Cocos nucifera
Pandanus tectorius
Trema orientalis

Flindersia brayleyana
Pithecellobium saman

(a) (b)

Figure 16.2  (a) A false color composite image of Nanawale Forest Reserve, Hawaii Island (R = 646 nm; G = 560.7 nm; B = 447 nm), with colored 
polygons showing locations of species data from a field survey. (b) Classification of 17 canopy species based on regularized discriminant analysis 
(n = 50 samples/species) using CAO VNIR imaging spectrometer data. (Reprinted from Féret, J.-B. and Asner, G.P., Remote Sens. Environ., 115, 
2415, 2013).
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improved (Asner 2013). It is likely that this is a consequence 
of improved instrument performance, especially for high-
fidelity HSI data and for the adoption of a wide variety of new 
analytical methods including radiative transfer models, seg-
mentation and object delineation, and numerous statistical 
methods such as ensemble classifiers, discriminate analysis, 
support vector machines, and combined approaches. No one 
method has yet been shown to work universally across global 
land cover types with complex environment and terrain inter-
actions. However, several general conclusions can be inferred 
from these and other studies: (1) the addition of SWIR bands 
along with VNIR bands often significantly increases the accu-
racy of mapping forest species; (2) species mapping is further 
enhanced if HSI data encompass multidate periods that cap-
ture phenological patterns, as is consistent with improve-
ments reported for multidate multispectral data (e.g., Wolter 
et al. 2008); and (3) combining information on tree structure 
from LiDAR, such as canopy height, diameter, and volume, 
with HSI data improves results (Féret and Asner 2013).

16.3.3  Canopy Physiology

Imaging spectroscopy can be used to characterize three key 
physiological processes responsible for carbon uptake in for-
ests: photochemistry, nonphotochemical quenching (NPQ), 
and fluorescence. Solar radiation, and photosynthetically active 
radiation (PAR; 400–700 nm) in particular, supplies the energy 
that drives carbon uptake in forests. The first process, photo-
chemistry, refers directly to the process by which the enzyme 
ribulose-1,5 bisphosphate carboxylase–oxygenase (RuBisCO) 
catalyzes RuBP to fix carbon from carbon dioxide. Within the 
Calvin cycle of C3 plants (which includes trees), photochemis-
try is driven by the energy supplied from light harvesting by 
pigment complexes. The second process, NPQ, relates directly 
to plant interactions with light. Plants downregulate photo-
synthesis through a range of processes related to pigment con-
centrations to either make use of light energy or dissipate it 
(Demmig-Adams and Adams 2006). Photochemistry and NPQ 
processes can be characterized through estimation of pigment 
concentrations or through inference based on changes in leaf 
pigment pools associated with plant responses to excess light 
or stresses that prevent them from fully utilizing ambient light 
energy (Demmig-Adams and Adams 1996). Finally, all plants 
dissipate light energy through solar-induced fluorescence (SIF), 
which only occurs as a consequence of photosynthesis and has 
been found to scale directly to rates of photosynthetic activity 
(Baker 2008).

Quantifying foliar nitrogen, the key element in RuBisCO 
and a trait whose concentration within proteins in foliage 
scales directly with photosynthetic capacity (Field and Mooney 
1986; Evans 1989; Reich et  al. 1997), provides a measure of 
the functioning of forest canopies (as described earlier). This 
functioning includes the capacity for carbon uptake, but photo-
synthetic downregulation limits carbon uptake under adverse 
environmental conditions. The most widely used models of 

photosynthesis employ the Farquhar model (Farquhar et  al. 
1980; Farquhar and von Caemmerer 1982), in which the poten-
tial photosynthetic performance of a leaf is characterized using 
two parameters: the maximum rate of carboxylation (Vcmax) 
governed by RuBisCO activity and the maximum electron 
transport rate (ETR) (Jmax is the maximum rate of ETR; Farquar 
and von Caemmerer 1982). Together, these limit the maximum 
rate of photosynthesis (Amax). Vcmax is strongly related to N con-
centration and LMA, that is, the investment by a plant in light 
harvesting relative to construction and maintenance (Poorter 
et al. 2009). ETR and Jmax are more closely related to the pro-
cesses set in motion by light harvesting in PSI and PSII (PS 
= photosystem), necessary for the synthesis of adenosine tri-
phosphate (ATP) to drive cellular reactions. Because the Calvin 
cycle depends on ATP availability to sustain the regeneration 
of RuBP (which in turn permits carboxylation), photosynthetic 
capacity is limited by Jmax. Therefore, the optical properties 
of foliage related to light harvesting may also facilitate map-
ping Jmax from HSI. It should be noted that all photosynthetic 
parameters of vegetation are sensitive to temperature and 
moisture, so any remotely sensed estimate of such parameters 
will be specific to the ambient conditions at the time of mea-
surement (Serbin et al. 2012). HSI has also been used as part of 
multisensor approaches to characterize net ecosystem photo-
synthesis (e.g., Rahman et al. 2001; Asner et al. 2004a; Thomas 
et al. 2006, 2009).

Doughty et  al. (2011) successfully related leaf-level spec-
troscopic measurements to Amax but had less success with the 
other parameters. Variations in Vcmax and Jmax related to tem-
perature were measured in cultivated aspen and cottonwood 
leaves and accurately predicted similar relationships in plan-
tation trees (Serbin et al. 2012). The ability to map Vcmax and 
Jmax from imaging spectroscopy is most likely a consequence 
of the ability to infer these properties from traits that are 
directly detectable based on known or hypothesized absorp-
tion features (e.g., N, LMA, and water; see Kattge et al. 2009 
and Cho et al. 2010) and the coordination of these traits with 
canopy structure (Ollinger et  al. 2013). These studies show 
promise for developing remote sensing methods to map the 
properties used by modelers to characterize forest physiologi-
cal function.

Efforts to map parameters directly associated with photo-
chemistry are an area of continuing development in imaging 
spectroscopy. The discipline of physiological remote sensing 
using HSI has its roots in efforts to characterize NPQ and how 
NPQ relates to photosynthetic rates and capacity. This work 
stems from the development of the Photochemical Reflectance 
Index (PRI) (Gamon et al. 1992; Peñuelas et al. 1995). While typi-
cally associated with the de-epoxidation of xanthophylls for pho-
tosynthetic downregulation during NPQ (Bilger and Björkman 
1990; Demmig-Adams and Adams 1996), the PRI more gen-
erally correlates with total pigment pools and their variation 
with environmental context (Gamon and Bond 2013). As such, 
the PRI has been shown to be an indicator of photosynthetic 
rates and light use efficiency (LUE) (Gamon and Surfus 1999). 
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Accounting  for  species composition, environmental variabil-
ity, and seasonal responses, the PRI is often correlated with the 
carotenoid to chlorophyll ratio (r2 = 0.50–0.80), a property linked 
to photosynthesis and light harvesting (Garbulsky et  al. 2011) 
(Figure 16.3). In addition, Stylinksi et  al. (2000) also showed 
close relationships between the PRI and xanthophyll cycle pig-
ments and modeled electron transport capacity (Jmax) in leaves of 
pubescent oak (Quercus pubescens). Kefauver et al. (2013) showed 

strong relationships between PRI and physiological damage to 
forests by ozone. A limitation of the PRI has been its species-level 
sensitivity, that is, relationships between the PRI and photosyn-
thesis are species dependent (Guo and Trotter 2004; Filella et al. 
2009; Ripullone et al. 2011). However, Hilker et al. (2008) have 
shown that PRI data may facilitate retrieval of plant photosyn-
thetic efficiency independent of species composition.

The key physiological processes responsible for productiv-
ity of forests can also be addressed by remote sensing through 
the estimation of light absorption by canopies and its pre-
sumed linkage to light harvesting and use in photosynthesis. 
Under nonstressed conditions, net primary production is lin-
early related to the absorbed photosynthetically active radia-
tion (APAR; Montieth 1977). This relationship is modulated 
by LUE. Traditionally, APAR has been successfully calculated 
from vegetation indices derived from spectral sensors of many 
varieties (e.g., Field et  al. 1995; Sellers et  al. 1996). The detec-
tion of forest LUE using PRI, and thus potential carbon uptake, 
has been demonstrated in numerous systems including boreal 
(Nichol et al. 2000) and conifer forests (Middleton et al. 2009; 
Atherton et al. 2013), but the utilization of remotely estimated 
APAR by the canopy for photosynthesis remains a more difficult 
task. The most common approach to assessing LUE using HSI 
has been through narrowband indices such as the PRI, which 
uses the reflectance at 570 and 531 nm (i.e., Gamon et al. 1997), 
but future developments in retrieving the Farquhar parameters 
(Vcmax, Jmax) and SIF are likely to provide more robust estimates 
of key drivers of physiological processes. Ultimately, linkages 
across methods, for example, estimating LUE using derivations 
biochemistry (%N) and LAI, may provide a hybrid approach to 
best map factors important to net primary productivity (NPP) 
(Green et al. 2003).

Chlorophyll fluorescence provides another means of esti-
mating photosynthetic performance and LUE from HSI data 
(Meroni et al. 2009). Numerous studies since the early 2000s 
have demonstrated the capacity of measurements of SIF to 
accurately characterize seasonal patterns of carbon uptake 
(Guanter et al. 2007; Frankenburg et al. 2011; Joiner et al. 2011). 
Under natural conditions, fluorescence and photosynthesis 
are positively correlated. Energy absorbed in the photosys-
tems is reradiated at longer wavelengths than those absorbed, 
adding a subtle signal to reflected solar radiation, most nota-
bly with peaks around 685 and 740  nm. Measurements of 
SIF require narrowband data at specific wavelengths in the 
NIR in which the vegetation fluorescence signal in retrieved 
reflectance (about 2%) can be distinguished from NIR albedo 
(>40%) (Berry et al. 2013). Most efforts to date have focused on 
retrievals of SIF in narrow wavebands (preferably <0.3 nm) ± 
20 nm around the solar Fraunhofer lines (wavelengths where 
there is no incoming solar energy, ~739  nm) or O2-A band 
at 760  nm. Generally correlated with the PRI (Zarco-Tejada 
et  al. 2009; Cheng et  al. 2013a), fluorescence has also been 
measured at field sites differing in soil salinity and estimated 

(b)(a)

(c) (d)

0.1

–0.08(f )(e)
5 km

Figure 16.3  Midsummer PRI images derived from 2009 AVIRIS 
of (a) oak/pine forests in Baraboo/Devil’s Lake, Wisconsin; (b) 
oak and tulip poplar forests in Fernow Experimental Forest, West 
Virginia; (c) northern hardwood and conifer forests in Flambeau 
River State Forest, Wisconsin; (d) xeric oak forests in Green Ridge 
State Forest, Maryland; (e) northern hardwood and subboreal coni-
fers in Ottawa National Forest, Michigan; and (f) hemlock, white 
pine, and deciduous hardwoods in the Porcupine Mountains, 
Michigan. Lower values indicate areas of greater vegetation stress. 
These images illustrate significant variability in forest physiological 
status across landscapes.
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spatially from airborne HSI data using the PRI index (531 and 
570  nm) (Naumann et  al. 2008). Zarco-Tejada et  al. (2009) 
estimated fluorescence from infilling of the O2-A bands at 
757.5 and 760.5  nm measured in 1  nm wavelength bands, 
which minimized confounding effects from variance in chlo-
rophyll and LAI. More recently, Zarco-Tejada et  al. (2013) 
used narrowband spectral indices and fluorescence infilling 
at 750, 762, and 780 nm, revealing that seasonal spectroscopic 
trends tracked changes in carbon fluxes. HSI observations 
continue to pave additional avenues to insight on plant physi-
ological processes.

16.4  LiDAR Remote Sensing of Forests

Whereas HSI provides estimates of the chemical, physiologi-
cal, and plant compositional properties of forests, LiDAR 
probes the structural and architectural traits of vegetation as 
well as the terrain below the canopy (Table 16.3). A large num-
ber of synthesis papers have been written on the use of LiDAR 
for studies of ecosystem structure (e.g., Dubayah and Drake 
2000; Lefsky et al. 2002; Lim et al. 2003; Vierling et al. 2008; 
Wulder et  al. 2012), including in other chapters of this book 
(e.g., Chapter 17). Here, we only briefly highlight the various 
uses of LiDAR in the context of forest structure, architecture, 
and biomass; the reader should also read Chapter 17 for fur-
ther details.

16.4.1  Canopy Structure and Biomass

The height of a forest canopy is a fundamental characteristic 
that both discrete and waveform LiDAR sensors are capable 
of describing (Figure 16.4). Even discrete-return datasets that 
contain only the first and last return from the laser pulse will 
allow for the calculation of this parameter, after a ground ele-
vation model has been generated from LiDAR data (Lim et al. 
2003). While canopy height alone does not provide extensive 
information on forest structure, it is a parameter related to tree 
diameters (Feldpausch et  al. 2012), and thus to aboveground 
biomass.

LiDAR can also be used to determine the vertical profile 
of canopy tissues including foliar and some woody structures 
(Figure 16.5). Waveform LiDAR instruments collect the full 
shape of the returning laser pulse, allowing for detailed infor-
mation on the structure of the canopy (Blair and Hofton 1999; 
Dubayah and Drake 2000; Ni-Meister et  al. 2001). If detailed 
canopy structure is of interest, but only discrete-return LiDAR 
data are available, it is possible to use these data to generate a 
pseudowaveform. This method aggregates discrete returns into 
bins over spatial extents that incorporate multiple laser spots in 
order to gain an aggregated understanding of the vertical veg-
etation profile in the absence of waveform data for each laser 
pulse (Muss et al. 2011). Vertical profiles are indicative of canopy 
density, vertical distribution, and the presence of undergrowth, 
all of which can provide information on the 3D structure and 
habitat of forests (Parker 1995; Lefsky et  al. 1999; Clark and 
Clark 2000; Weishampel et  al. 2000; Drake et  al. 2002; Asner 
et al. 2008; Vierling et al. 2008).

One of the most widespread uses for LiDAR-derived can-
opy information is in the estimation of aboveground biomass, 
also known as aboveground carbon density (ACD). Such 
approaches have been applied in numerous studies of conifer, 
broadleaf temperate, and tropical forest ecosystems (Nelson 
1988; Lefsky et  al. 1999, 2002, 2005; Popescu et  al. 2003; 
Næsset and Gobakken 2008; van Aardt et al. 2008; Asner et al. 
2012c; Wulder et  al. 2012). The mean canopy profile height 
(MCH) has been used as the canopy structural metric, which 
relates the LiDAR vertical structure data to ACD (Lefsky et al. 
2002; Asner et  al. 2009). However, recent studies have indi-
cated that variations in sensor characteristics and settings can 
cause significant differences in the MCH metric between data 
acquisitions (Næsset 2009), strongly indicating that top-of-
canopy height is a more reliable method for estimating ACD of 
tropical forests (Asner and Mascaro 2014). The use of LiDAR 
data to produce estimates of ACD that closely match plot-level 
estimates allows for the mapping and monitoring of aboveg-
round carbon stocks at landscape scales and, with the fur-
ther development of spaceborne LiDAR, potentially regional/
biome scales.

Table 16.3  Forest Structural Properties Estimated from LiDAR, along with an Estimate of Scientific Maturity and Example References

Vegetation Property Maturity Level Example References 

Total canopy height ✓✓✓ Dubayah and Drake (2000), Ni-Meister et al. (2001), Drake et al. (2002), and Lim et al. (2003)
Mean canopy profile height ✓✓✓ Lefsky et al. (1999, 2002, 2005)
Aboveground biomass ✓✓ Nelson  (1988), Lefsky et al. (1999, 2002, 2005), Popescu et al. (2003), Næsset and Gobakken (2008), van Aardt 

et al. (2008), Asner et al. (2012c), and Wulder et al. (2012)
Leaf area density ✓ Sun and Ranson (2000), Lovell et al. (2003), Riaño et al. (2004), Morsdorf et al. (2006), Richardson et al. 

(2009), Soldberg et al. (2009), and Vaughn et al. (2013)
Understory presence ✓✓ Zimble et al. (2003) and Asner et al. (2008)

Note:	 Maturity is a metric of relative accuracy as depicted in the literature, with one checkmark indicating low maturity and three checkmarks indicating high 
maturity.
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16.4.2  Light Penetration

Canopy gaps, or openings in forest canopies, influence popu-
lation dynamics of forest trees by affecting forest structure, 
regeneration dynamics, and species composition (Brokaw 1985; 
Denslow 1987). Canopy gaps occur at scales ranging from sin-
gle branches to multiple treefalls and result from disturbances 
caused by natural tree life cycles (Asner 2013), human processes 
such as logging (e.g., Nepstad et  al. 1999; Asner et  al. 2004b; 
Curran et al. 2004), and environmental factors such large-scale 
blowdowns (Chambers et  al. 2013). Recently, airborne LiDAR 
data from a number of tropical forests have enabled the measure-
ment of millions of canopy gaps over large spatial scales, both as 
single measurements and with repeat collections, improving the 
understanding of static and dynamics gaps, respectively (e.g., 
Magnussen et al. 2002; Kellner et al. 2009; Udayalakshmi et al. 
2011; Armston et al. 2013).

Static canopy-gap size-frequency distributions (known as λ) 
are strikingly similar across a wide range of tropical forest 
types on differing geologic substrates and within differing dis-
turbance regimes. This collective evidence suggests consistent 
turnover rates and similar mechanisms of gap formation across 
tropical forests (Kellner and Asner 2009; Asner et al. 2013, 2014). 
Deviations from this stable range of observed λ values poten-
tially provide another metric for detecting and mapping distur-
bance. In a recent study, repeat LiDAR collections permitted the 
quantification of positive height changes in a forest canopy in 

Hawaii and illustrated how size and the proximity to other cano-
pies influenced the outcome of competition for space within this 
forest (Kellner and Asner 2014).

16.5  Integrating HSI and LiDAR

In recent years, HSI and LiDAR observations have been inte-
grated using two approaches. One method involves the acquisi-
tion of HSI and LiDAR data from separate platforms, such as 
from different aircraft, followed by modeling and analysis steps 
to fuse the resulting datasets (e.g., Mundt et al. 2006; Anderson 
et al. 2008; Jones et al. 2010). This is currently the most common 
approach, and following acquisition, the data must be digitally 
coaligned using techniques such as image pixel–based coreg-
istration. These efforts usually yield an integrated data “cube” 
with an average misalignment of one pixel or so, although the 
scanning and/or array patterns of the HSI and LiDAR data may 
yield much higher coalignment errors.

Full waveform
lidar

Discrete return
lidar

Figure 16.4  Illustration of waveform and discrete-return measure-
ments of a tree. While both provide information on the vertical struc-
ture of canopies, discrete-return sampling records the returning laser 
pulse at specified peaks (e.g., first and last pulse) of the return wave, 
whereas waveform sampling collects the full shape of the returning 
pulse. (Reprinted from Lim, K. et al., Prog. Phys. Geogr., 27, 88, 2003).
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Figure 16.5  LiDAR cross-sectional views of four mature tropical 
forests in the Peruvian Amazon, Panamanian Neotropics, southeastern 
Madagascar, and Hawaii depict 3D forest structure along a 100 m long × 
20 m wide transect. Right-hand panels show mean and spatial variance of 
LiDAR vertical canopy profiles for all returns in a 1 km2 area centered on 
each cross section. Vertical canopy profiles are generally consistent across 
the four study sites, yet the Hawaiian forest contains the most pronounced 
groundcover, understory, and canopy layers. (Reprinted from Asner, G.P. 
et al., Oecologia, 168, 1147, 2012b).
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A second, rapidly growing approach to HSI and LiDAR data 
integration involves the comounting of instruments on the same 
platform, whether on board aircraft or an unmanned aerial vehi-
cle (UAV) (Asner et al. 2007). Integration steps range from colo-
cating the instruments on the same mounting plate on board 
the aircraft or UAV, to precise time registration of each mea-
surement, to final data fusion using ray tracing models for each 
instrument (Asner et al. 2012a). Each of these steps is key to pro-
ducing a highly integrated dataset, reducing coalignment issues 
such that the data can be treated as one information vector per 
unit ground sample (e.g., one pixel). The onboard and postflight 
fusion of HSI and LiDAR data developed and deployed by the 
CAO (http://cao.carnegiescience.edu) has been replicated and is 
currently being used by the U.S. NEON’s Airborne Operational 
Platform program (http://www.neoninc.org/science/aop).

16.5.1  Benefits of Data Fusion

The benefits of HSI and LiDAR data fusion include increased 
data dimensionality, constraints on the interpretation of one 
portion of the dataset using another portion, and filtering of 
data to specific observation conditions or specifications. The 
dimensionality of, or degrees of freedom within, a fused dataset 
increases with the integration of complementary or orthogonal 
observations such as chemical or physiological metrics from HSI 
and structural or architectural measures from LiDAR. A highly 
demonstrative example can be taken from two integrated HSI–
LiDAR datasets collected with the CAO Airborne Taxonomic 
Mapping System (Figure 16.6). One dataset was collected over 
a portion of Stanford University in 2011, and the other taken 
over a remote Amazonian rainforest in the same year. In the 
Stanford case, the LiDAR data alone contain about 25 degrees 
of freedom for a 200 ha area comprised buildings with varying 
architecture, vegetation ranging from grasses to trees, roads and 
pathways, and other built surfaces. Here, degrees of freedom are 
quantitatively assessed using principal component analysis, so 
each degree is orthogonal to or unique from the others (Asner 
et al. 2012a). A 72-band VNIR image of the same Stanford scene, 
taken from the same aircraft, contains about 50 degrees of free-
dom. Combined, the VNIR HSI and LiDAR provide about 100 
degrees of freedom. A VSWIR imaging spectrometer on board 
the same aircraft provides about 260 degrees of freedom in 
the Stanford case. In conjunction, the LiDAR and VNIR and 
VSWIR HSI offer more than 330 orthogonally aligned sources 
of information. In the Amazon forest case, data fusion yields 
similar increases in data dimensionality, more than doubling 
the information content by sensor fusion over that which can be 
achieved by any one sensor.

A second powerful use of combined HSI and LiDAR data 
involves constraint of interpretation and/or filtering of one 
data stream relative to the other. Looking down upon a forest 
canopy, one observes strong variation in bright and dark por-
tions of the canopy, as well as gaps and spectrally inconsistent 

observation conditions (Figure 16.7). As a result, reflectance 
analysis of forests is often an underdetermined problem involv-
ing variation in 3D architecture, leaf layering (LAI), and foliar 
biochemical constituents. This variation in illumination con-
ditions occurs between pixels in high-resolution HSI data and 
within pixels in lower resolution HSI data. One of many pos-
sible ways to constrain observation conditions for improved 
HSI-based analysis of forest canopy traits is to use the LiDAR 
(Asner and Martin 2008; Dalponte et  al. 2008; Colgan et  al. 
2012b). For example, LiDAR maps of top-of-canopy structure 
can be used to precisely model sun and viewing geometry on 
the canopy surface in each pixel. Combined with simple filter-
ing of the HSI data based on the NDVI or other narrowband 
indices, an HSI image can be partitioned into regions most 
suitable for a particular type of analysis. Biochemical analy-
ses are particularly sensitive to this filtering process, and much 
higher performances in biochemical retrievals can be achieved 
based on combined HSI–LiDAR filtering (Asner and Martin 
2008). Still other approaches to integrate HSI and LiDAR data 
have yet to be explored, such as in the full 3D analysis and 
modeling of canopy structural and functional traits. These 
approaches will become more common with the rise of inte-
grated data fusion systems.
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Figure 16.6  Integration of HSI and LiDAR sensor hardware, and 
data streams, provides a uniquely powerful way to greatly increase the 
inherent dimensionality of the data collected over forested areas and 
other ecosystems. For two sample 200 ha areas (Stanford University 
and a lowland Amazonian forest), individual LiDAR and HSI sensors 
provide highly dimensional data as assessed with principal components 
analysis. The dimensionality of the data increased when data are ana-
lyzed simultaneously. Here, VNIR is a visible-to-near infrared HSI and 
VSWIR is a visible-to-shortwave infrared HSI. All sensors combined 
are referred to as the Airborne Taxonomic Mapping Systems on board 
the CAO. (Reprinted from Asner, G.P., Remote Sens. Environ., 124, 454, 
2012a).
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Figure 16.7  Prescreening of (a) HSI data using fused (b) LiDAR data. This can be accomplished in various ways, and an example is shown here. 
(c) A minimum NDVI threshold of 0.8 ensures sufficient foliar cover in the analysis. (d) Combining LiDAR and solar-viewing geometry, a filtering 
mask is generated to remove pixels in shade or of ground and water surfaces. (e) The resulting suitability image provides an indication of pixels that 
can be used for biophysical, biochemical, and/or physiological analysis.
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16.6  Conclusions

HSI and LiDAR mapping provides independent and highly 
complementary data on forest canopies and whole ecosystems. 
Here, we summarized sources of HSI and LiDAR data, their gen-
eral uses in determining forest structural and functional prop-
erties, and the potential value of collecting and analyzing HSI 
and LiDAR together via hardware integration and data fusion. 
Much of the science of HSI and LiDAR analysis of forests will 
remain in the airborne domain until orbital instrumentation 
is deployed and made available to the scientific research and 
application communities. In light of the myriad studies found 
throughout the remote sensing, forest science, and conservation 
research literature, it is clear that the time is right for a rapid 
expansion of HSI and LiDAR data collection and sharing efforts 
worldwide.
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