
mong the most significant recent breakthroughs in
remote sensing has been the development of hyper-

spectral sensors and the software to analyze the resulting image
data. A short time ago, only spectral remote sensing experts
had access to hyperspectral images and the software tools nec-
essary to take advantage of them. During the past decade,
though, hyperspectral image analysis has matured into one of
the most powerful and fastest-growing technologies in the field
of remote sensing. 

A hyperspectral image is one in which the reflectance from
each pixel is measured at many narrow, contiguous wavelength
intervals. Such an image provides detailed spectral signatures
for every pixel. These signatures often provide enough infor-
mation to identify and quantify the material(s) existing within
the pixels. A user could, for instance, employ a hyperspectral
image to locate and quantify different types of building mate-
rials or minerals that might be present within an area of inter-
est or even within a single pixel.

This article will discuss the difference between hyperspec-
tral and multispectral images, introduce relevant spectral con-
cepts, review some recent applications of hyperspectral image
analysis, and summarize image-processing techniques com-
monly applied to hyperspectral imagery.

Spectral image basics
To understand the advantages of hyperspectral imagery, it helps
to first review some basic spectral remote sensing concepts. You
may recall that each photon of light has a wavelength deter-
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mined by its energy level. Light and
other forms of electromagnetic radia-
tion are commonly described in terms
of their wavelengths. For example, vis-
ible light has wavelengths between 0.4
and 0.7 microns, whereas radio waves
have wavelengths greater than about 1
millimeter (see Figure 1). 

Reflectance is the percentage of light
hitting a material that is then reflected
by that material (as opposed to being
absorbed or transmitted). A reflectance
spectrum shows the reflectance of a
material measured across a range of
wavelengths. Some materials will reflect
certain wavelengths of light, while other
materials will absorb the same wave-
lengths. Many materials have unique

FIGURE 1 The electromagnetic spectrum with the region of visible light expanded.

Hyperspectral images are sometimes referred
to as “image cubes” because of the large
number of measured wavelengths. The face 
of the cube in this example is an image of an
agricultural region in Australia, which was
collected by the Hyperion sensor. The top and
right side of the cube show hundreds of color-
coded pixel values measured for each pixel
along the top and right edge of the image. 
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From analyzing
eelgrass beds
in the Pacific
Northwest to

identifying
pathfinder

minerals for
geological

exploration,
hyperspectral

imagery and
analysis is
proving its

worth for
diverse remote 

sensing
tasks. 
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of narrow, contiguous wavelength bands.
In fact, the hyper in hyperspectral means
“over,” or “too many.”  So you might say
that hyperspectral images measure too many
wavelengths. When we look at a spectrum
for one pixel in a hyperspectral image it
looks very much like a detailed spectrum
that would be measured in a spectroscopy
laboratory (see Figure 5). This type of
detailed pixel spectrum provides much more
information about the surface than a mul-
tispectral pixel spectrum. Thus, hyper-
spectral imagery provides the potential for
more accurate and detailed extraction of
information than is possible with multi-

patterns of reflectance and absorption across
wavelengths. The reflectance spectra in
Figure 2, for instance, reveal three differ-
ent materials. Many materials can be iden-
tified by their spectra. 

Field and laboratory spectrometers usu-
ally measure reflectance at many narrow,
closely spaced wavelength bands, so that
the resulting spectra appear to be continu-
ous curves as seen in Figure 2. When a spec-
trometer is used in an imaging sensor, the
resulting images record a reflectance 
spectrum for each pixel in the image (see
Figure 3).

Hyperspectral sensors
Remote sensing has included multispectral
sensors — sensors which collect images for
a small number of broad wavelength bands
— since Landsat 1 was launched in 1972.
Although multispectral sensors were revo-
lutionary when first introduced, they 
lack sufficient spectral resolution for pre-
cise surface studies because of their 
low number of spectral bands(see Figure
4). In contrast to multispectral instruments,
hyperspectral sensors measure hundreds 

spectral remote sensing technology.
Although most hyperspectral sensors

measure hundreds of wavelengths, it is not
the number of measured wavelengths that
defines a sensor as hyperspectral. Rather it
is the narrowness and contiguous nature of
the measurements. For example, a sensor
that measures only 20 bands would be con-
sidered hyperspectral if those bands were
contiguous and, say, 10 nanometers wide.
If the sensor measures 20 wavelength bands
that are 100 nanometers wide, or that are
separated by nonmeasured wavelength
ranges, the sensor would not be considered
hyperspectral.

FIGURE 2 Here we see the reflectance spectra measured by
laboratory spectrometers for three materials — a green bay laurel,
mineral talc, and silty loam soil.

FIGURE 4 In this figure, we see the reflectance spectra of the same
three materials seen in Figure 2 as they would appear to the
multispectral Landsat 7 sensor.

FIGURE 3 In hyperspectral imagery,
measurements are made at many narrow,
contiguous wavelength bands, resulting in a
complete spectrum for each pixel.
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FIGURE 5 This example reveals the reflectance spectra of the same three materials shown
in Figures 2 and 4 as they would appear to the hyperspectral Airborne Visible Infrared
Imaging Spectrometer, or AVIRIS. The gaps in the spectrum are wavelength ranges at which
the atmosphere absorbs so much light that no reliable signal is received from the surface.



A passive system. Most hyperspectral
imaging sensors, like most multispectral
imaging sensors, are passive optical sen-
sors. This means that they measure the
amount of visible and infrared radiance
passively reflected or emitted from the sur-
face. Passive optical sensors operating in
visible and near- infrared wavelengths
detect sunlight energy reflected by surfaces
while the sun is illuminating the Earth.
There is no reflected energy available from
the sun in these wavelength regions at night,
so images cannot be collected at
night. Energy that is naturally emit-
ted (such as thermal infrared), how-
ever, can be detected day or night.
All hyperspectral sensors are spec-
trometers, which means that they
include a prism or diffraction grat-
ing that can break the incoming radi-
ation into discrete wavelengths,
which are then dispersed separately
to detectors. Thus, hyperspectral sen-
sors are often referred to as imaging
spectrometers. 

The signal measured by an air-
borne hyperspectral sensor is gener-
ally digitized and then recorded
onboard the aircraft, and retrieved
once the aircraft lands. The signal
measured by a satellite hyperspectral
sensor is digitized and then elec-
tronically transmitted to a ground
receiving station. Most hyperspec-
tral data providers will convert hyper-
spectral image data to radiance units
before distributing the data. Although
hyperspectral images are usually not
georeferenced, some data providers
will georeference hyperspectral
images to a map projection or lati-
tude/longitude grid on request. Some
data providers offer location infor-
mation that the end user can employ
to georeference the data. Radiometric
and geometric accuracy of the data,
as well as pixel size and image swath
width, vary significantly among
hyperspectral sensors. It is recom-
mended that users of hyperspectral
data explore these issues with their
data provider prior to purchasing
data. 

Platforms. For the most part hyper-
spectral sensors have been airborne
(see Table 1) with two recent excep-
tions: NASA’s Hyperion sensor on

the EO-1 satellite and the U.S. Air Force
Research Lab’s FTHSI sensor on the
MightySat II satellite. Several new space-
based hyperspectral sensors, though, have
recently been proposed (see Table 2 on page
44). Unlike airborne sensors, space-based
sensors can provide near global coverage
repeated at regular intervals. Therefore, the
amount of hyperspectral imagery available
should increase significantly in the near
future as new satellite-based sensors are suc-
cessfully launched. 

Image analysis broadbrush
Hyperspectral imagery has been used to
detect and map a wide variety of materials
having characteristic reflectance spectra.
For example, hyperspectral images have
been used by geologists for mineral map-
ping (Clark et al., 1992; 1995) and to detect
soil properties including moisture, organic
content, and salinity (Ben-Dor, 2000).
Vegetation scientists have successfully used
hyperspectral imagery to identify vegeta-
tion species (Clark et al., 1995), study plant

Hyperspectral 101

TABLE 1 Current hyperspectral sensors
Number Spectral range

Satellite sensors Manufacturer of bands (in microns)

FTHSI on MightySat II Air Force Research Lab 256 0.35–1.05
www.vs.afrl.af.mil/

TechProgs/MightySatII

Hyperion on EO-1 NASA Goddard  220 0.4–2.5
Space Flight Center

eo1.gsfc.nasa.gov   

Number Spectral range
Airborne sensors Manufacturer of bands (in microns) 

AVIRIS NASA Jet Propulsion Lab 224 0.4–2.5
(Airborne Visible Infrared makalu.jpl.nasa.gov/
Imaging Spectrometer) 

HYDICE Naval Research Lab 210 0.4–2.5
(Hyperspectral Digital Imagery 

Collection Experiment) 

PROBE-1 Earth Search Sciences Inc. 128 0.4–2.5 
www.earthsearch.com 

casi ITRES Research Limited up to 228 0.4–1.0
(Compact Airborne www.itres.com

Spectrographic Imager)

HyMap Integrated Spectronics 100 to 200 Visible to thermal infrared
www.intspec.com 

EPS-H GER Corporation VIS/NIR (76), VIS/NIR (.43–1.05),
(Environmental www.ger.com SWIR1 (32), SWIR1 (1.5–1.8),

Protection System)
SWIR2 (32), SWIR2 (2.0–2.5),

TIR (12) and TIR (8–12.5)

DAIS 7915 GER Corporation VIS/NIR (32), VIS/NIR (0.43–1.05),
(Digital Airborne SWIR1 (8), SWIR1 (1.5–1.8),

Imaging Spectrometer)
SWIR2 (32), SWIR2 (2.0–2.5),

MIR (1), MIR (3.0–5.0),
TIR (6) and TIR (8.7–12.3)

DAIS 21115 GER Corporation VIS/NIR (76), VIS/NIR (0.40–1.0),
(Digital Airborne SWIR1 (64), SWIR1 (1.0–1.8),

Imaging Spectrometer)
SWIR2 (64), SWIR2 (2.0–2.5),

MIR (1), MIR (3.0–5.0),
TIR (6) and TIR (8.0–12.0) 

AISA Spectral Imaging up to 288 0.43–1.0  
(Airborne Imaging www.specim.fi

Spectrometer) 

Footnotes : VIS = visible      NIR = near infrared      SWIR = shortwave infrared      TIR = thermal infrared      MIR = mid infrared



within a spectral image, or individ-
ual pixels. Now let’s discuss some rel-
atively common hyperspectral/mul-
tispectral image analysis methods.

Whole-pixel. Whole-pixel analysis
methods attempt to determine
whether one or more target materi-
als are abundant within each pixel in
a multispectral or hyperspectral image
on the basis of the spectral similarity
between the pixel and target spectra.
Whole-pixel scale tools include stan-
dard supervised classifiers such as
minimum distance or maximum like-
lihood (Richards and Jia, 1999), as
well as tools developed specifically
for hyperspectral imagery such as
spectral angle mapper (SAM) and
spectral feature fitting. 

SAM. Consider a scatter plot of
pixel values from two bands of a
spectral image. In such a plot, pixel

spectra and target spectra will plot as points
(see Figure 6). If a vector is drawn from the
origin through each point, the angle
between any two vectors constitutes the
spectral angle between those two points.
The SAM (Yuhas et al., 1992) computes a
spectral angle between each pixel spectrum
and each target spectrum. The smaller the
spectral angle, the more similar the pixel
and target spectra. This spectral angle 
will be relatively insensitive to changes in
pixel illumination because increasing or
decreasing illumination doesn’t change the
direction of the vector, only its magnitude
(a darker pixel, for instance, will plot 
along the same vector, but closer to the ori-
gin). Note that although this discussion
describes the calculated spectral angle using
a two-dimensional scatter plot, the actual
spectral angle calculation is based on all of
the bands in the image. In the case of a
hyperspectral image, a spectral “hyper-
angle” is calculated between each pixel and
each target. 

Spectral feature fitting. Another approach
to matching target and pixel spectra is to
examine specific absorption features in the
spectra (Clark et al., 1991). An advanced
example of this method, called Tetracorder,
has been developed by the U.S. Geological
Survey (Clark et al., 2000). A relatively sim-
ple form of this method, called spectral fea-
ture fitting, is also available in a commer-
cial image processing software product. In
spectral feature fitting, the user specifies a

et al., 1991a; Salisbury et al., 1991b;
Salisbury et al., 1994). 

Analysis methodology
Many image analysis algorithms have been
developed specifically to exploit the exten-
sive information contained in hyperspec-
tral imagery. Most of these algorithms also
provide accurate, although more limited,
analyses of multispectral data. Spectral
analysis methods usually compare pixel
spectra with a reference spectrum (often
called a target). Target spectra can be
derived from a variety of sources, includ-
ing spectral libraries, regions of interest

canopy chemistry (Aber and Martin,
1995), and detect vegetation stress
(Merton, 1999). Military personnel
have used hyperspectral imagery to
detect military vehicles under partial
vegetation canopy and to achieve
many other military target detection
objectives. The type of quantitative
information extraction in the stud-
ies mentioned above usually requires
accurate preprocessing of the hyper-
spectral imagery and collection of
accurate auxiliary data. Among the
first challenges faced when per-
forming quantitative analysis of
hyperspectral data, for instance, are
those encountered due to the atmos-
phere. 

Atmospheric correction. When sun-
light travels from the Sun to the
Earth’s surface and then is reflected
to an air- or spaceborne sensor, the
intervening atmosphere often scatters some
light. Therefore, the light received at the
sensor may be more or less than that caused
by reflectance from the surface alone.
Atmospheric correction attempts to mini-
mize these effects on image spectra and is
an indispensable step before conducting
quantitative image analysis or change detec-
tion using multispectral or hyperspectral
data. Sophisticated atmospheric correction
algorithms are available to calculate con-
centrations of atmospheric gases directly
from the detailed spectral information 
contained in hyperspectral imagery, with-
out additional data about atmospheric 
conditions. 

Spectral libraries. Another often critical
element for spectral analysis is a good spec-
tral library. Spectral libraries are collections
of reflectance spectra measured from mate-
rials of known composition, usually in the
field or laboratory. Comparing hyperspec-
tral data with data in a spectral library can
help a user to quickly identify the material
in question. Spectra from libraries can also
guide spectral image classifications or define
targets to use in spectral image analysis.
Many investigators collect spectral libraries
for materials in their field sites as part of
every project to facilitate analysis of multi-
spectral or hyperspectral imagery from those
sites. Several high-quality spectral libraries
are also publicly available (for instance,
Clark et al., 1993; Grove et al., 1992;
Elvidge, 1990; Korb et al., 1996; Salisbury

Hyperspectral 101

FIGURE 6 Pixel and target spectra plot as
points in this scatter plot of pixel values. 
If a vector is drawn from the origin through
each point, the angle between any two
vectors constitutes the spectral angle
between those two points. 

TABLE 2 Proposed space-based hyperspectral sensors

Satellite Sensor Agencies

ARIES-I ARIES-I Auspace Ltd
(Australian ACRES
Resource Geoimage Pty. Ltd.

Information and CSIRO
Environment Earth Resource Mapping

Satellite)
Pty. Ltd.

PROBA CHRIS European Space Agency
(Project for 
On Board 

Autonomy)

NEMO COIS Space Technology 
(Naval Development Corp.

EarthMap Naval Research Laboratory
Observer)

PRISM PRISM European Space Agency
(Process 

Research by
an Imaging

Space Mission)



range of wavelengths within
which a unique absorption fea-
ture exists for the chosen target.
The pixel spectra are then com-
pared with the target spectrum
using two measurements. First,
the depth of the feature in the
pixel is compared with the depth
of the feature in the target. Next,
the shape of the feature in the
pixel is compared with the shape
of the feature in the target (often
using a least-squares technique). 

Subpixel methods. Subpixel
analysis methods can be used to
calculate the quantity of target
materials in each pixel of an
image. The technique can detect
quantities of a target that are
much smaller than the pixel size
itself. In cases of good spectral
contrast between a target and its
background, subpixel analysis has
detected targets covering as little
as 1–3 percent of the pixel.
Subpixel analysis methods include
complete linear spectral unmix-
ing and matched filtering.

Unmixing. The set of spectrally unique sur-
face materials existing within a scene are
often referred to as the spectral endmembers
for that scene. Linear spectral unmixing
(Adams et al., 1986; Boardman, 1989)
exploits the theory that the reflectance spec-
trum of any pixel is the result of linear com-
binations of the spectra of all endmembers
inside that pixel. A linear combination in this
context can be thought of as a weighted aver-
age, where each endmember’s weight is
directly proportional to the area of the pixel
containing that endmember. If the spectra of
all endmembers in the scene are known, then
their abundances within each pixel can be
calculated from each pixel’s spectrum. 

Unmixing simply solves a set of n linear
equations for each pixel, where n is the num-
ber of bands in the image. The unknown
variables in these equations are the frac-
tions of each endmember in the pixel. To
have more equations than unknowns, it is
necessary to have more bands than end-
member materials. With hyperspectral data,

this is almost always true. 
The results of linear spectral unmixing

include one abundance image for each end-
member. The pixel values in these images
indicate the percentage of the pixel made
up of that endmember. For example, if a
pixel in an abundance image for the end-
member quartz has a value of 0.90, then 90
percent of the area of the pixel contains
quartz. An error image is also usually cal-
culated to help evaluate the success of the
unmixing analysis.

Matched filtering. Matched filtering
(Boardman et al., 1995) is a type of unmix-
ing in which only user-chosen targets are
mapped. Unlike complete unmixing, one
doesn’t need to find the spectra of all end-
members in the scene to get an accurate
analysis (hence, this type of analysis is often
called partial unmixing because the unmix-
ing equations are only partially solved).
Matched filtering was originally developed
to compute abundances of targets that are
relatively rare in the scene. If the target is
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not rare, special care must be
taken when applying and inter-
preting matched filter results. 

This technique filters the
input image for good matches
to the chosen target spectrum
by maximizing the response of
the target spectrum within the
data and suppressing the
response of everything else
(which is treated as a compos-
ite unknown background to the
target). Like complete unmix-
ing, a pixel value in the output
image is proportional to the
fraction of the pixel that con-
tains the target material. Any
pixel with a value of zero or less
would be interpreted as back-
ground (none of the target is
present). 

One potential problem with
matched filtering is that it is
possible to end up with false
positive results. A solution is to
calculate an additional meas-
ure called infeasibility. This
measure is based on both noise

and image statistics and indicates the degree
to which the matched filter result is a fea-
sible mixture of the target and the back-
ground. Pixels with high infeasibilities are
likely to be false positives regardless of their
matched filter value. 

Final frame
Hyperspectral sensors and analyses have
provided more information from remotely
sensed imagery than ever possible before.
As new sensors provide more hyperspectral
imagery and new image processing algo-
rithms continue to be developed, hyper-
spectral imagery is positioned to become
one of the most common research, explo-
ration, and monitoring technologies used
in a wide variety of fields. 

References
To view the extensive references associated
with this article, please see the online 
version at www.geospatial_online.com/
shippert. �

The face of this image cube shows the city of Mobile, Alabama with data
collected by the Hymap sensor. Again, the top and right side show color-coded
pixel values measured for each pixel along the top and right edge. 
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Research Systems, Inc. –– A Kodak Company, is a technical software company that develops software applications for use in remote sensing and GIS, medical imaging,
data visualization, analysis and rapid application development. Among RSI's software products is ENVI (Environment for Visualizing Images), the easiest to use and
most advanced remote sensing software solution available. ENVI includes everything you need to display and analyze virtually any type of high spatial resolution or
high spectral resolution image data, as well as data from any single band and SAR radar sources. Contact Research Systems, Inc. at 303.786.9900 or visit us on the
Web at www.ResearchSystems.com to learn more.


