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Abstract—DEMs derived from dense remotely sensed 
measurements, including lidar- and radar-based DEMs, provide 
much greater surface detail than traditional interpolated DEMs but 
suffer from random noise that perturbs measures of surface shape 
such as slope and flow direction. Smoothing is an effective method 
of reducing noise but also tends to impact on important surface 
features, lowering hilltops, raising valleys and obliterating 
important fine detail. This paper describes a multiscale adaptive 
smoothing approach that responds to both the relief and noise level 
in a DEM by smoothing aggressively where the noise is larger than 
the local relief and smoothing little or not at all where noise is less 
than relief. The method is simple and efficient and can be readily 
implemented in a raster GIS environment. The method is 
demonstrated on noisy SRTM data.  

 INTRODUCTION 

A digital elevation model (DEM) is an imperfect 
representation of a real land surface. The impact for 
geomorphometric applications of the imperfections in the DEM 
depends on how they affect measures of surface shape such as 
slope, flow direction and curvature. 

Through the formative years of computerized 
geomorphometry, or digital terrain analysis, most DEMs were 
produced by interpolation of relatively sparse source data mostly 
derived from topographic maps. Such DEMs are locally smooth 
and the main source of imperfection was the lack of detail in the 
surface form, particularly in low relief areas where contours are 
widely spaced.  

More recently many DEMs are produced from dense 
remotely sensed measurements by radar, lidar or 
photogrammetric methods. These DEMs typically have at least 
one measurement for every grid cell so capture surface detail 
well but the measurements are usually subject to error. This 
appears as noise in the elevation data, with varying characteristics 
depending on the data source. Measures of shape that depend on 
local differences in elevation are severely affected by random 

noise and tend to be more of a problem in low relief areas where 
shapes are subtle.   

Smoothing by local averaging is an effective procedure for 
reducing noise but involves trading off the level of smoothing 
against the preservation of real terrain features: a large smoothing 
kernel removes noise well but tends to obliterate small features 
and rounds sharp edges, while small kernels preserve the terrain 
features but do not remove noise effectively. Ideally a smoothing 
method should provide more smoothing where noise is large 
relative to the topographic variation and little or no smoothing 
where the noise is much smaller than the topographic variation. 
The different signal-to-noise ratios can be due to both varying 
signal levels (topographic variation) and to varying noise levels. 

This paper describes such an adaptive smoothing method that 
removes noise while preserving terrain features, responds to 
varying noise levels and can also fill in missing data. It uses a 
multi-resolution statistical approach that is efficient and can be 
readily implemented in a raster GIS environment. 

THE ADAPTIVE SMOOTHING METHOD 

The adaptive smoothing method is based on the ideas of Lee 
[1] but extended to multiple resolutions. Lee’s method computes 
the local mean jiz ,  and noise-adjusted variance jiQ , at location 

ji,  then derives an estimated value as a weighted sum of the 
local mean and the original noise-corrupted value: 

 ji
ji

ji
ji

ji
ji z

Q

Q
z

Q
x ,2

1,

,
,2

1,

2
1

,ˆ
σσ

σ
+

+
+

=  (1) 

where 2
1σ is the variance of the noise; jix ,  denotes the actual 

value at ji,  and jiz ,  the noise-corrupted value. The effect is that 

where the variation in the noisy signal is significantly larger than 
the noise, the noisy value is used as estimated actual value since 
the noise does not have a big impact; where the variation is small 
compared to the noise the local mean is used, reducing the noise 
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significantly. Lee’s method has been used to smooth DEMs, for 
example Simard et al [2] who used a Lee-type filter at 5x5 to 
smooth SRTM elevations with a fixed noise standard deviation of 
1.8m 

Lee notes that “The use of different window sizes will greatly 
affect the quality of processed images. If the window is too small, 
the noise filtering algorithm is not effective. If the window is too 
large, subtle details of the image will be lost in the filtering 
process.” The solution to the choice of window size in this 
adaptive smoothing method is to smooth over multiple window 
sizes, letting the variance at each window size control how much 
the mean at that window size contributes to the estimated value.  

The algorithm accounts for spatially varying noise variance 
and computes the means and variances on nested windows so that 
all calculations after the first resolution step are performed on 
progressively coarser grids, leading to very efficient processing. 

The multi-resolution algorithm is similar to a multi-scale 
Kalman smoothing method [3,4] and consists of a series of 
progressive aggregations followed by a series of refinements 
back to the original resolution. 

The algorithm is initialized with: 
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except at locations with no data which are initialized with: 

 0,0,0,0 0000 ==== nvww gsq  (3) 

w  is the weighting for each cell, equal to the inverse of 
variance v , and n  is the number of cells with data. 

Then for each step i  from 1 to maxi : 
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At each step the weights and squared weights are summed 
(4), (5) and the variance-weighted mean is computed (6). The 
variance for the group of data points gv  is the sum (9) of the 

between-group variance bgv  (7) and the within-group variance 

wgv (8). Between-group variance is the variance due to 

differences between group means, and the within-group variance 
is due to variances between values within the group, just as in an 
ANOVA. The variance of the mean for the group mv is 
equivalent to the inverse of the aggregated weight (10). The 
effective number of cells effn  is derived from the weights (12); it 

is equal to the number of cells n  when the weights are all equal 
but is less than n  when the weights are unequal. The mean noise 
variance in the group mv  is derived from the number of cells and 
the aggregated weight (13). The final step (14) compares the 
group variance with the mean noise variance and uses a statistical 
test to decide whether the group variance is small enough that the 
values in the group can be considered to be equal to the mean 
value, in which case it takes the variance of the mean as the 
variance at that resolution; otherwise it takes the group variance. 

The critical value 2
critχ  is computed with degrees of freedom 

equal to one less than the effective number of values effn . 
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This yields a nested series of means and variances at 
progressively coarser resolutions that can then be combined in 
the reverse sequence. This process is initialized with: 
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Then for each step i  from maxi  down to 1: 
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The smoothed coarse-scale elevations sz and variances sv are 
first refined to the next finer resolution (16), the variance 
calculated by aggregation at that resolution and the smoothed 
variance from the coarser resolution are combined (17) to 
produce the smoothed variance at the finer resolution, then the 
smoothed elevation is obtained by a weighted sum (18) of the 
elevation aggregated to that resolution and the smoothed 

elevation from the coarser resolution. The final result is 0
sz , the 

smoothed DEM, and 0sv , the estimated variance. 

Each step in the algorithm corresponds to a relatively simple 
raster calculation that can be implemented in a GIS. Using 
ArcInfo GRID, the sums in the first phase can be calculated using 
the AGGREGATE function over 3×3 cell groups and the 
refinements in the second phase can be calculated using a 
FOCALMEAN function, after suitably setting extents and cell 
sizes. There are some minor artifacts in the results that could be 
reduced using a more sophisticated refinement step. 

The method assumes normally distributed and spatially 
uncorrelated noise; the degree to which divergence from those 
ideals affects the quality of the smoothing has not been 
investigated. 

The statistical test (14) is probably the key distinguishing 
feature of this algorithm. It expresses the assumption that, where 
the grouped variance is low enough, the measured elevations in a 
local area should be considered to be randomly perturbed 
measurements of a single true elevation i.e. that the land surface 
is flat. The variance for that group (for the purpose of combining 
values in the refinement phase) is then the variance of the 

calculated mean, mv , which is much smaller than the variance of 
the measurements.  This low variance ensures that the mean 
dominates over the samples since 11 −− << ii

s vv  in (17). 

ESTIMATING NOISE FROM A DEM 

To apply this adaptive smoothing algorithm to DEM data an 
estimate of variance is required for each point. The method to 
estimate noise described here was developed for use with 
1″ SRTM data (after destriping, filling voids and removing 
vegetation offsets, Gallant et al [5]) and was to some extent tuned 
to the characteristics of that DEM particularly the spatially 
correlated nature of the noise. Other data sources might require a 
different method; in some cases an estimate of the noise might be 
provided by the DEM production process. 

For each cell a mean value is calculated over an annulus from 
3 to 5 cells in radius; the annulus means that values near the 
target cell are excluded from the mean value. The difference 
between the target cell and the mean value is calculated, and the 
standard deviation of that difference over a 5 cell window is then 
derived. This provides information about the size of variation of 
elevations from the mean elevations a moderate distance away – 
the idea is that this variation should be mostly noise since modest 
topographic variation will produce spatially coherent differences 
from the mean which will contribute little to the standard 
deviation of differences. 

This initial noise magnitude estimate is still quite erratic, so it 
is smoothed by two steps of median filtering, the first by 
aggregation over a 5×5 rectangle and the second over a circular 
window with a radius of 5 cells on this coarsened grid. The 
resulting grid is then refined back to the DEM resolution using 
bilinear resampling. The estimate corresponds to noise standard 
deviation. 

Fig. 1 shows the results of this analysis on the 1 second 
SRTM DEM over a part of Western Australia where noise levels 
are highly variable. 

Note that this method effectively distinguishes between noise 
and topography in low relief terrain with long slopes but is 
unable to make that distinction in higher relief areas or where 
there is an abrupt feature in otherwise low relief terrain. The 
strategy chosen to overcome this problem was to progressively 
reduce the estimated noise level as the standard deviation of 
elevation increased above 5 m.  

ADAPTIVE SMOOTHING OF SRTM 

Fig. 2 shows shaded relief and Fig. 3 shows slope calculated 
from the 1 second SRTM DEM before and after application of 
the adaptive smoothing method using the noise estimate from 
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Figure 1. The shaded relief image highlights the smoothness of 
the low relief areas after adaptive smoothing. The low slopes of 
around 1–2% that dominate in this landscape are overwhelmed 
by the noise before smoothing. After smoothing the topographic 
slopes are clearly apparent. The steeper slopes in the south-
eastern corner of the image are largely unaffected by the 
smoothing. 

DISCUSSION 

This relatively simple adaptive smoothing algorithm 
effectively treats spatially varying noise in DEMs derived from 
dense remotely-sensed measurements. The method has also 
successfully been applied to lidar DEMs using a constant noise 
standard deviation of 0.2 m. 

The smoothing algorithm also replaces areas of nodata with 
smoothed data from surrounding areas, due to the initialization 
with 0 weights in (3), which can be used as a simple method for 
filling voids. 
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Figure 1.  Noise standard deviation (m) estimated from SRTM data in Western 
Australia, 119.0E 33.6S. The square is an area of trees with higher radar 

reflectivity and hence lower noise than the surrounding cleared land 
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Figure 2.  Shaded relief of a sub-section of the area in Figures 1 and 3 from 
SRTM data before (left) and after (right) adaptive smoothing. 
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Figure 3.  Slope calculated from 1” SRTM data before (top) and after (bottom) 
adaptive smoothing, using noise standard deviation of Figure 1. 

 


